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ABSTRACT
If widespread deployment of AI systems is to be accepted by society
in the future, it is crucial that such systems are trustworthy. Trust-
worthiness for autonomous systems has a number of dimensions
including safety, ethics, fairness and explainability. In this paper,
we argue that an explicitly multi-objective decision making ap-
proach is the correct way to ensure trustworthiness in AI systems,
and we address the following fundamental questions in support of
our argument: 1) Why is it necessary to treat trustworthiness as a
multi-objective problem? 2) How should rewards for a trustworthy
agent be specified? 3) How should a trustworthy agent reason over
multiple objectives? 4) Where should preferences for a trustworthy
agent come from?
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1 INTRODUCTION
A key global challenge is ensuring that AI is beneficial to humanity.
The EU has for example decided to focus on human-centered trust-
worthy AI based on strong collaborations among key stakeholders
to maximise the opportunities and minimise the risks. Trustworthi-
ness is a prerequisite for people and societies to develop, deploy,
and use AI systems. Since there are many important and incommen-
surable factors in trustworthiness including transparency, privacy
and fairness, they naturally lead to multi-objective decision making
(MODeM) problems.

MODeM problems appear in a wide variety of real-world scenar-
ios. For example, when choosing sources for electricity generation,
fossil fuels are often cheaper than renewable energy sources such
as wind power, however fossil fuels are also generally more dam-
aging to the environment than renewables. Multi-objective deci-
sion making approaches explicitly consider the trade-offs between
conflicting objectives in such problems (e.g. cost vs. environment
impact), allowing an appropriate balance between objectives to be
achieved in accordance with system designer / user preferences.
Algorithmic approaches to solving MODeM problems span many
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interrelated fields, such as reinforcement learning (RL) [10], plan-
ning [10], multi-agent systems [21], game theory [21] and utility
theory, to name a few. We argue that to ensure trustworthiness
in AI systems, it is necessary to adopt explicitly multi-objective
approaches to autonomous decision making.

This paper therefore explores the relation betweenmulti-objective
decision making and trustworthy AI. More specifically, we address
the following questions:

(1) Why is it necessary to treat trustworthiness as a multi-
objective problem?

(2) How should rewards for a trustworthy agent be specified?
(3) How should a trustworthy agent reason over multiple objec-

tives?
(4) Where should preferences for a trustworthy agent come

from?

2 TRUSTWORTHINESS AS A
MULTI-OBJECTIVE PROBLEM

According to the High-Level Expert Group on AI appointed by the
European Commission, Trustworthy AI has three main aspects,
which should be met throughout the system’s entire life cycle [13]:
it should be lawful, ethical, and robust. The four ethical principles
are respect for human autonomy, prevention of harm, fairness and ex-
plicability. Based on these, the High-Level Group defined seven key
requirements for Trustworthy AI: (1) human agency and oversight,
(2) technical robustness and safety, (3) privacy and data governance,
(4) transparency, (5) diversity, non-discrimination and fairness, (6)
environmental and societal well-being and (7) accountability.

These requirements are in essence incommensurable objectives,
and making decisions carefully under these requirements is an
inherently multi-objective process. This is especially important
since in practice there are often tensions between these different
objectives, and the objectives of the system designer and/or end
user. For example, in some cases one might have to make a trade-off
between accuracy and transparency where this choice might not
be the same in every particular instance.

To measure an agent’s performance and trustworthiness in a
multi-objective manner after it has performed a task, one could
arrange the values of each quantity that is of interest into a value
vector, v. For example, in an electricity generation scenario, vmight
contain the objectives [fuel_cost, emissions, noise, safety].
As well as primary objectives (such as fuel_cost), the measured
values for the trustworthiness requirements described earlier (such
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as safety) can also be explicitly accounted for, allowing an agent
to optimise for and be evaluated on the desired trustworthiness
requirements in addition to its primary goals.

Once a multi-objective perspective has been adopted, an im-
portant question that must be answered is: how to select the pre-
ferred multi-objective outcome? When evaluating different candi-
date agents to perform a task, the system designer can compare the
multi-objective value vectors for each agent; if one agent is superior
across all objectives then that agent is the clear winner. However, if
e.g. one agent has a low fuel_cost but high noise, while a second
agent has a high fuel_cost but low noise, their value vectors are
non-dominated with respect to each other, and an appropriate value
vector must be chosen according to the preferences of the system
designer or end user. According to the ethical guidelines, it is our
individual and collective responsibility as a society to work towards
ensuring that all three components help to achieve Trustworthy AI.
Having this explicit choice, helps us take the trustworthiness into
account.

One option to allow selections between non-dominated vectors
is to define a utility function 𝑢 that takes a value vector as input,
and returns a scalar value:

𝑣𝑢 = 𝑢 (v) (1)

Given an appropriate utility function, a ranking over possible agents
to solve a task could be established, based on the utility of their
respective value vectors. More generally, a utility function can be
paramaterised by both a value vector v, and another vector w that
specifies the preferences of the system designer. A canonical and
widely-used example of a utility function is linear scalarisation:

𝑣𝑢 = 𝑢 (v,w) = w⊤v (2)

By explicitly representing the different aspects as a value vector,
the problem and the solution is made more understandable by hu-
mans which will directly improve the transparency of the approach,
the accountability, and the potential for human oversight.

3 REWARD SPECIFICATION
In typical agent-based decision making systems, desired behaviours
are achieved by optimising a single clearly defined objective func-
tion that is specified by the system designer. However, the de-
sign of these objective functions are often arbitrary, and may be
counter-intuitive. For example, the performance of agents based on
approaches such as reinforcement learning or planning can be eval-
uated in terms of a designer-specified reward function; such agents
then aim to learn or plan a policy to select actions that maximise
the sum of rewards they receive. The general idea is to favourably
reward desirable actions and penalise undesirable ones. However,
this assumes the foreknowledge of desirable and undesirable ac-
tions a priori, which may not be feasible in many practical scenarios.
Another fundamental issue when designing reward maximising
agents is the lack of principled guidelines for the specification of
reward functions. As noted recently by Knox et al. [17], the main
textbooks, as well as the wider research community, devote very
little attention to the topic of reward design.

In certain types of problems, the design of reward functions
to evaluate the performance of an autonomous system is rela-
tively straightforward. For example, for a system conducting high-
frequency trading of stocks or other asset classes, an obvious ob-
jective is the total profit achieved in dollars; this naturally leads to
rewards that are based on the profit/loss for each specific action
(trade). When performance can easily be evaluated in quantitative
terms (e.g., cost, emissions, travel time etc.), there exist natural
specifications for rewards that an agent can optimise for.

However, in many problems it is not straightforward to design
reward functions. Consider for example an autonomous driving
scenario; how should a collision between an autonomous vehicle
and a piece of street furniture be rewarded? Should the reward
for such an undesirable outcome be -10, -100, or -1,000,000 even?
This is an example of an arbitrarily defined reward; the scale of the
reward is chosen by the system designer, and is not well-justified.
In such settings, the relative reward values assigned to different
actions is generally also arbitrary, and the incorrect specification
of rewards could have an adverse effect on the policy learned [3].
Worse still, such arbitrarily-defined reward functions often combine
multiple different terms representing various desirable/undesirable
behaviours into the same reward function, making it nearly impos-
sible for the agent to reason about which aspects of its behaviour
map to which desirable/undesirable reward term.

A potential solution for settings where there is no natural quan-
titative measure of performance could be to move towards event-
based learning, where each event that occurs during an agent’s
interaction with its environment is simply associated with a binary
reward (1 if event is true and 0 if event is false). Such an approach
is better suited to situations where the underlying task may lack
a natural representation of rewards (as is the case in the earlier
example of assigning collision rewards for autonomous vehicles).

The binary reward structure of an event-based approach would
obviate the need for such arbitrary reward assignments. Event-
based binary rewards were recently [6] shown to be particularly
effective in goal-based, real world tasks [30], where it is generally
more feasible to assign rewards to specific desirable events, as op-
posed to every possible state-action pair. Some recent research has
also applied event-based binary rewards in multi-objective settings
[15, 20]. This approach to specifying rewards could potentially be
further developed by decoupling the occurrence of events from how
desirable or undesirable they may be. Doing so would allow for a
more flexible multi-objective decision making framework, where
decisions could be made using a utility function which combines the
event-based reward components in accordance with the desirability
of the event. This would allow the utility of the multi-objective re-
turns of various actions to be compared. The utility function could
in turn be determined separately, through an independent process.
Hence, the overall approach here fundamentally demands the spec-
ification of what constitutes (a) an event and (b) the desirability of
an event. We will discuss (a) here, and (b) later on in Section 5.

A number of approaches could be used to identify distinct event
occurrences during learning. With feature-based representations,
adaptive variants of 𝑘-means clustering [16] have been shown to re-
liably and autonomously identify distinct regions of the state-space.
The key idea is to track the mean and variance of each feature
during learning, and to use these quantities to identify significant



deviations from historically observed features, which could be indi-
cate the occurrence of distinct, novel events. Classical concepts such
as relative novelty [25] and state importance [4], previously used for
sub-goal discovery and apprenticeship learning respectively, could
also be employed for the identification of distinct events during
learning. The common theme underlying these approaches is the
identification of outlying states on the basis of specific state prop-
erties. As these properties need not be tied to the objective/reward
function, and primarily depend on the state representation, it allows
the problem of event identification to be decoupled from that of
learning desirable behaviours, making it agnostic to the specific
learning algorithms used.

4 TRUSTWORTHY REASONING OVER
VECTOR REWARDS

Assuming the environment produces event-based binary reward
vectors as described in the previous section, the question then
becomes how to select actions based on those vector rewards. Con-
ventional approaches to the creation of utility-maximising agents
such as reinforcement learning have generally assumed that the
desired behaviour can be encapsulated in the form of a single, scalar
measure of utility (the reward signal in single-objective RL) [26].
When faced with a vector reward, these methods need to concate-
nate the different factors into a single scalar reward term prior to
providing the reward to the agent. Most commonly this has been ac-
complished by simply summing the reward components associated
with each factor, either with or without weighting [22]. However
this linear scalarisation approach is difficult to tune to find an ap-
propriate trade-off between the different factors, and risks finding
an inferior or inappropriate solution [10, 29].

Non-linear scalarisation functions may increase the range of
policies which can be found by the agent, and may be a more ac-
curate expression of the desired characteristics of a trustworthy
agent. For example, a trustworthy agent must perform in a manner
which is within acceptable safety bounds – this can be expressed
using threshold lexicographic ordering [7] to ensure that the ac-
tions performed keep the probability of an adverse event below
an acceptable threshold [8]. This type of scalarisation would fit
very naturally with event-driven rewards, where the components
correspond to the discounted probability of events.

Other non-linear scalarisations may also be used to capture
different aspects of trustworthiness. For example the concept of
fairness can be expressed in terms of the Generalised Gini Welfare
Index (GGWI) which compares the utility received by different
stakeholders and selecting decisions which minimise the extent to
which any individual is negatively impacted [24]. In the context of
event-based rewards, this may require a two-step approach:

(1) a utility measure is derived for each stakeholder using a
scalarisation functionwhich corresponds to their preferences

(2) the GGWI is applied to these individual utility measures
to determine the policy which best satisfies our concept of
fairness.

However applying a non-linear scalarisation prior to passing
the reward to the agent on each time-step may lead to incorrect
behaviour from the agent, as the returns are no longer additive [22].
The alternative, and we would argue more appropriate, approach

is to adopt an explicitly multi-objective method in which the agent
is provided with an unscalarised reward vector. The agent itself
then assumes responsibility for learning a suitable policy which
takes into consideration all of the objectives. This also allows for
the possibility of multi-policy learning, in which the agent learns
a set of policies which produce different trade-offs between the
objectives [1, 28].

A range of approaches to multi-objective decision-making have
been proposed and evaluated in the literature, particularly in the
area of multi-objective reinforcement learning (MORL). Any of
these may potentially be applicable to the creation of trustworthy
agents. For a summary of these algorithms we recommend [10, 14]
and [22].

One issue that must be considered when using non-linear utility
functions to make decisions is the choice of optimisation criterion:
scalarised expected returns (SER) or expected scalarised returns
(ESR) [22]. For linear utility functions both criteria are equivalent
[10], however for non-linear utility functions the ESR and SER
criteria can lead to significantly different behaviours [11, 23].

In settings where the safety of a decision is paramount (e.g. select-
ing medical treatments), ESR is the correct optimisation criterion,
as the utility of the user would be derived from a single execution of
the agent’s policy. On the other hand, the SER criterion may be most
appropriate for situations where fairness is important, as in this
case the utility is derived from the expected value of objectives over
multiple policy iterations, e.g. when a government makes a series of
decisions on how to allocate funding to different sectors of society.
Therefore, when taking a multi-objective approach to trustwor-
thy decision making, choosing the correct optimisation criterion is
crucial to ensuring that the desired behaviour is achieved.

Another point to take into consideration for ESR settings where
safety is important, or where there is a high degree of uncertainty
about the outcomes of actions, is that it may be beneficial to move
beyond simple expected value approaches to reasoning about re-
wards, and instead consider probability distributions over possible
reward values when making trustworthy decisions. Research into
distributional multi-objective decision making is still at an early
stage [9, 11], but could potentially allow agents to more easily avoid
negative outcomes, or to make decisions that do not exceed a cer-
tain level of risk of negative outcomes that is deemed acceptable
by the system designer.

A serious shortcoming of agents that reason using expected value
approaches can be demonstrated with a simple example. Consider
two actions 𝑎1 and 𝑎2. Each time 𝑎1 is selected, a reward of 1.0
is returned. Each time action 𝑎2 is selected, there is a 50% chance
of getting a reward of 0.0 and 50% chance getting a reward of 2.0.
Both actions have the same expected value of 1.0, however there
is much greater uncertainty about the outcome of 𝑎2. If safety and
consistency of outcomes is desirable, it is clear that a trustworthy
agent should always prefer action 𝑎1. However, agents that select
actions based on expected rewards will not be able to make this
distinction during action selection, as the information about the
probabilities of rewards occurring is lost when storing expected
reward values only.

Reasoning about agent behaviours in the manner that we have
outlined has a huge advantage over traditional single-objective
approaches in terms of explicability, which includes explainability



and transparency. If interrogated about why a specific decision
was made, a single-objective agent will simply report back that
the action taken had a higher expected reward than all other ac-
tions, which is not very informative; traditionally designed rewards
are often meaningless as we outlined in Section 3, so the relative
expected reward values for actions contain very little useful infor-
mation about why a certain action is selected. A MODeM agent
using the ideas that we have outlined would have a much greater
degree of explicability; the agent could report the expected (or dis-
tributional) reward values for each objective of interest, and then
demonstrate that the action leading to the most preferred com-
promise over objectives was chosen according to the user’s utility
function. Such an approach gives a clear link between the decisions
made by an agent during deployment, and the preferences specified
by the system designer over the range of possible agent behaviours
[5].

Of course in this section we have yet to account for how the
details of utility functions are derived – for example, how are thresh-
olds determined for a safety-aware agent, and where do the individ-
ual stakeholder utility functions come from in our fairness example?
The following section will address this issue.

5 PREFERENCES OVER OBJECTIVES FOR
TRUSTWORTHY AGENTS

The problem of learning trustworthy preferences for different events
depends on several subjective factors, which one may only be able
to capture via one of more forms of human input. Indirect ways
to infer human values typically use expert demonstrations and im-
itation learning [12]. However, such approaches are tedious and
burdensome from a human perspective, and it imposes a require-
ment of human expertise for the task under consideration.

Preference elicitationmay be amore direct and promisingmethod
to develop utility functions for trustworthy agents in the future.
For example, Zintgraf et al. [31] successfully used pairwise compar-
ison queries over outcomes and Gaussian processes to model the
utility of domain experts for a traffic regulation problem with 11
objectives. Such methods could readily be adapted to model user
utility with regard to trustworthy behaviours, such as fairness and
safety.

Large-scale studies such as the MIT Moral Machine study [2]
also demonstrate preference elicitation through the use of voting
systems as a tool for ethical decision making for autonomous vehi-
cles. Here, human participants were presented with, and made to
choose between pairs of scenarios that differed from each other in
terms of one or more morally-sensitive features. Based on the tens
of millions of collected responses, the study constructed approxi-
mate ethical models to capture the collective preferences over all
voters. Although such systems help build prior models of human
preferences, they rely on carefully designed surveys targeted at
solving specific problems, which may or may not translate well
when applied to real world scenarios.

Frazier et al. [19] recently proposed a more organic approach
for capturing human preferences, in which they utilised naturally
occurring stories in comic strips as a training source, and extracted
human societal norms encoded in them. The authors used natural
language descriptors found in the comic strips to classify how well

they align with the main character’s behaviour. From the point of
view of scalability, such an approach is superior, as it leverages
existing data sources to extract societal preferences.

Considering that societal values and morals are context depen-
dent, and tend to evolve over time (sometimes rapidly, as in the case
of an emergency such as the COVID-19 pandemic), it is essential
that learned preference models are flexible, and able to react to
these changes. This type of flexibility was identified as an essential
requirement of human-aligned AI by The IEEE Global Initiative for
Ethical Considerations in Artificial Intelligence and Autonomous
Systems [27, p25]. Such flexibility may also be required to remain
consistent with contemporary legislative requirements. One way
to achieve this could be through multi-policy methods mentioned
in Section 4, in which multiple possible policies that vary in their
trade-offs for different objectives are learned, and stored as a be-
haviourally diverse policy set. Whenever the requirements change
(e.g., due to a change in legislation), an appropriate policy could be
selected through efficient search mechanisms without having to
train the agents from scratch [18]. Such frameworks could present
robust and adaptive ways of handling a diverse range of ethical
requirements as dictated by contemporary societal rules and norms.

6 CONCLUSION AND FUTUREWORK
In this paper, we have outlined how we believe the problem of
creating trustworthy autonomous systems can be successfully tack-
led using MODeM principles. We hope that this work will serve
as an inspiration to other researchers, and will help to drive the
adoption of multi-objective approaches across a wide variety of
applications. To conclude, we present a list of interesting future
research directions that could be explored when applying MODeM
principles to design trustworthy AI:

• The development of principled guidelines for reward design.
• Methods to classify and automatically identify events of
interest via binary event reward encoding.

• Comprehensive studies on the implications of optimisation
criteria (ESR vs. SER) for the trustworthiness of AI systems.

• New distributional reward algorithms to enable deployment
of trustworthy AI in risk-aware and safety-critical settings.

• Development of MODeM approaches to explicability, along
with benchmarking of such approaches against the current
state-of-the-art.

• Further development of methods that allow system design-
ers to specify utility functions that enable trustworthy be-
haviour.
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