
Evaluating Tunable Agents with Non-Linear Utility Functions
under Expected Scalarised Returns

Federico Malerba
Faculty of Science

University of Potsdam
malerbafede@gmail.com

Patrick Mannion
School of Computer Science

National University of Ireland Galway
patrick.mannion@nuigalway.ie

ABSTRACT
In many multi-objective decision making problems, the preferences
of the user over outcomes are most naturally expressed using non-
linear utility functions. However, most research to date has focused
on simple linear utility functions. In order to enable future real-
world applications of MODeM algorithms such as multi-objective
reinforcement learning or planning, it is crucial that the behaviour
of these algorithms when combined with non-linear utility func-
tions is better understood. To address this gap in the literature, in
this paper we evaluate the behaviour of a tunable Deep Q-Network
agent with a wide range of non-linear utility functions under the
expected scalarised returns criterion in a benchmark item gathering
environment.

KEYWORDS
Multi-objective, reinforcement learning, non-linear utility

1 INTRODUCTION
The defining feature of tunable agents [6] is their ability to display
a variety of different behaviours at runtime. One key possible appli-
cation of this is for a real user to tell an agent what he/she values or
is interested in; the agent would then solve whatever problem it has
been trained for, while trying to maximize the user’s utility. Non-
linear utility functions can better approximate (in the general case)
the user’s utility function, and could even just be easier for a user
to understand (e.g. assigning a weight of -1.5 to a car crash, versus
setting a threshold of zero for it). While the problem of correctly
estimating the user’s utility is beyond the scope of this paper, the
topic has received some attention to date. For example, in [17] an
approach that uses Gaussian processes and pairwise comparisons is
studied; techniques like these are almost certain to yield non-linear
estimates of the user’s utility function, so agents should therefore
be trained to tackle such utilities.
Training and evaluating agents on non-linear utilities is a task that
comes with several challenges. For example, establishing metrics
to compare agents trained on different sets of utility functions is
non-trivial; this is due to the fact that an agent’s utility defines
its own objective for which, in general, the optimal policy is not
known. Different utility functions could also have the same common
optimal policy, but it is difficult to determine when this is the
case. In this work we describe the first experimental study that
comprehensively compares the effect of several families of non-
linear utility functions on the sets of policies learned by multi-
objective reinforcement learning (MORL) [4] agents.

Proc. of the 1st Multi-Objective Decision Making Workshop (MODeM 2021), Hayes, Man-
nion, Vamplew (eds.), July 14-16, 2021, Online, http://modem2021.cs.nuigalway.ie. 2021.

2 BACKGROUND
2.1 Multi-Objective Reinforcement Learning
In traditional RL [5, 13], the environment provides the agent with
a scalar reward at every time-step and the agent’s learning process
seeks to maximize the discounted expected reward over the entire
episode. There are many real-world scenarios, however, where
multiple different objectives need to be optimized at the same time.
As an example, imagine a logistics problem where one might want
to optimise for different quantities of interest such as cost, speed,
reliability, carbon footprint, etc. These cases can be modelled under
the framework of multi-objective reinforcement learning.
In MORL the environment that the agent interacts with provides
a vector of rewards r = [𝑟1, . . . , 𝑟𝑛] ∈ R𝑛 . Each entry refers to a
specific objective and just like in traditional RL we can define the
state value function V𝜋 (𝑠). Note that in this case r and V𝜋 (𝑠) are in
bold as they denote 𝑛-dimensional vectors. This setting is extremely
interesting from a game-theoretic standpoint and it introduces
several new concepts such as Pareto optimality and various new
types of equilibria, which will not be explored here[2][1][8][15].
The only important concept that will be useful within the scope of
this work is that of dominance.

Definition 1. Let r1, r2 ∈ R𝑛 be two reward vectors. r1 is said to
dominate r2 iff

𝑟1,𝑖 ≤ 𝑟2,𝑖 ∀ 0 < 𝑖 ≤ 𝑛 (1)

Just like in traditional RL, the agent has the objective of maximizing
the expected reward; however, the multi-dimensional nature of this
reward makes the task no longer as "trivial" as before. The key
problem is that the rewards are now in R𝑛 which does not have a
canonic order like R, and the concept of dominance introduced can
only serve as a partial ordering. To deal with this issue, a utility
function can be used to select the preferred non-dominated value
vector. A utility function 𝑢 maps a value vector to a single scalar

𝑢 : R𝑛 → R
V ↦→ 𝑢 (V) (2)

The problem can now be framed once again as one of optimization,
where the agent seeks to find the optimal policy as determined
by the combination of vectorized rewards with the specific utility
function selected [10].
The utility function 𝑢 can assume a multitude of different forms;
typically it is assumed to be monotonically increasing [4][16], i.e.,

V ≤ V′ =⇒ 𝑢 (V) ≤ (V′) (3)
Where the partial order over the set R𝑛 ∋ V is defined following
Definition 1 by

http://modem2021.cs.nuigalway.ie

V ≤ V′ ⇐⇒ 𝑉𝑖 ≤ 𝑉 ′
𝑖 ∀ 0 < 𝑖 ≤ 𝑛 (4)

Linear utility functions, for example, are intuitively defined with a
particular choice of weights w ∈ R𝑛 as

𝑢 (V) =
𝑛∑
𝑖=1

𝑤𝑖𝑉𝑖 (5)

Other non-linear choices of utility functions are also possible, and
they allow the exploration of many Pareto-optimal solutions which
linear utility functions would never be able to optimize for. For
example, it is well-known in the MORL literature that linear utility
functions cannot be used to learn policies in concave regions of the
Pareto front [14].

2.2 Learning in the MORL setting
Until now, the problem has been framed in terms of the state value
function and the utility value obtained by mapping it via a utility
function 𝑢. As will be now shown, this still does not address how
to concretely update a DQN [7] model to improve its performance.
The optimization problem in the traditional RL setting is framed in
terms of minimizing the temporal difference error. Translating this
to the MORL setting - where utility functions are also involved - is
non-trivial and there are several factors to consider.
A first important problem is deciding whether to optimize for ex-
pected scalarized returns (ESR) or scalarized expected retuns (SER)
[4]. Mathematically the two procedures are distinguished by where
the utility function is applied with respect to the expectation of
returns, i.e.

𝐸𝑆𝑅 = E

[
𝑢

(∞∑
𝑡=0

𝛾𝑡 r𝑡

)
| 𝜋, 𝜇0

]
(6)

𝑆𝐸𝑅 = 𝑢

(
E

[∞∑
𝑡=0

𝛾𝑡 r𝑡 | 𝜋, 𝜇0
])

(7)

where 𝜋 is the policy that is being followed by the agent, 𝛾 is the
discount factor and 𝜇0 is the distribution over the initial states. The
impact of this distinction and the considerations to be made on the
usage of one over the other are beyond the scope of this work. For
an exploration of the topic see e.g. [9, 11, 12]. One key observation
to be made, however, is that in the case of linear utility functions
the two expressions are equal. The experiments conducted in this
paper follow the ESR approach.
Because non-linear utility functions in MOMDPs do not distribute
across the sum of immediate and future returns [9], this invalidates
the Bellman equation for most RL algorithms. To deal with this
issue, it is necessary to augment the environment state with the
cumulative reward vector (CRV) which, intuitively, is equal to the
cumulative sum of the reward vectors provided by an environment
𝐸 at all steps prior to a given one. During learning, the utility of
the CRV can be calculated at each timestep and then the per-time-
step delta in utility may be determined. This value is then stored
in the replay buffer for our DQN agents and is used for gradient
computations as discussed in Section 2.2.

In the remainder of this work utility functions will be used to map
reward vectors, CRVs1 or state-values v to scalar values. The three
entities have the same dimensionality and live in the same space,
thus no changes to the definition of a utility function are required
to switch between the three usages.

2.3 Tunable Agents
The motivational idea behind training tunable agents is that the
choice of a utility function is arbitrary, and different real-world
agents could value objectives differently. Furthermore, in certain
contexts it could be undesirable for a trained agent to exhibit static
behaviour at runtime. Observing these problems, Källström and
Heintz [6] proposed a new framework to train agents that are capa-
ble of learning many different policies that maximize for different
utility functions; at runtime these agents are capable of changing
their behaviour based on the utility function that is provided to
them.

2.3.1 The training process. Instead of training an agent with a fixed
utility, a setU of utility functions is constructed and the agent is
trained with utility functions sampled from that set2. A simple
example of what this set could look like, is the linear utilities case
where

U = {𝑢 : R𝑛 → R | ∃ w ∈ R𝑛 : 𝑢 (V) = w · V} (8)

Let 𝑃 be a probability distribution defined over the setU. During
training at the beginning of every episode a sample 𝑢𝑖 ∈ U is
produced following the distribution 𝑃 . The 𝑖-th episode is then sim-
ulated using the utility 𝑢𝑖 to map the per-timestep reward vectors
to per-timestep utilities that the agent can then learn to maximize
as in the traditional RL setting.
Of course, the specific utility function 𝑢𝑖 that is used at the 𝑖-th
episode plays a crucial role in determining what the optimal policy
to be followed should be at that episode. It is therefore useful to
provide this function (or a representation of it) as input to the agent,
so that it can best decide what the optimal actions to take are when
trying to maximize the utility function 𝑢𝑖 at the 𝑖-th episode.

2.3.2 Important notes. When comparing thework and terminology
adopted in this paper with [6], there are a couple key differences
that must be addressed.
To start with, [6] dealt only with linear utility functions which are
uniquely identifiable by the weights used on each reward-triggering
event. These weights are what they refer to as preferences though,
in a more general context3, the term is too restrictive and it is
preferable to refer to these as a utility function parametrization
(UFP). Given that the experiments conducted in this work make
exclusive use of the DQN architecture, the UFP should be thought
of as a vector that uniquely identifies a utility function from the set
U on which the agent is trained. This vector representation is fed
to the agent as part of its observations and the agent should learn

1Note that with, a slight abuse of notation, reward vectors and CRVs will be both
denoted by r; which one is being referred to at any given point will be clear from the
context.
2It is important to note that an agent trained on a set U, should only be provided with
utility functions 𝑢 ∈ U at runtime.
3i.e. with arbitrary utility functions.

to output Q-values that estimate the utility of the expected return
for the given UFP and state observations.
It is also necessary to establish consistency in the usage of the
term reward; in the traditional RL setting the reward fed by the
environment is also stored in the replay buffer along with all the
transitions and will be used to compute the gradients to update the
agent. In MORL however, the term is used when talking about the
vector fed to the agent by the environment which is different from
what gets used in the gradient computations. In accordance to this,
within the scope of this work (unless otherwise specified) reward
will refer to the vector of rewards for each objective, whilst the
term utility will be used when talking about the scalar value that
is used in gradient computations and that the learning algorithm
actually seeks to maximize.

3 EXPERIMENTAL DESIGN
This work follows the framework (and its DQN implementation)
proposed by [6]. The objective is to extend this to families of non-
linear utility functions ranging from threshold utilities to a rela-
tively new family of utility functions that has recently been defined
in [3]. The code used for running the environment, training the
agent and evaluating can all be found at a public GitHub reposi-
tory4.

3.1 Gathering environment
The gathering environment shown in Figure 1 used for our ex-
periments is very similar to the one provided by [6], with some
minor tweaks to adjust undesirable behaviour; specifically the end
of episode criterion was updated to reflect what it would have to
be like for the non-linear utilities used.

Figure 1: Example initial state of the gathering environ-
ment.

The environment consists of an 8x8 grid containing 8 items to
be collected; these items are randomly positioned at the start of
every episode within the 4x4 sub-grid located at the center. While
the location of items is random, their numbers are fixed; there are
always 3 red items, 3 green items and 2 yellow items. The colours
for these items are meaningless and serve only as a placeholder for
different objectives that an agent could be interested in.
An episode in this environment ends after 30 steps or when no
valuable items remain in it. An item is valuable if there is a positive
utility to be gained in taking it. Note that this end-episode condition
is utility dependant, so an agent might terminate or not a certain
episode depending on what utility function has been sampled for
that episode.
4https://github.com/FMalerba/tunable-agents-MORL

3.1.1 Agents and movement. The agent to be trained is represented
by the blue square and always starts in the bottom left corner, whilst
a second agent always starts at the opposite corner. This second
agent is a deterministic one; it is not trained and implements a very
simple heuristic policy. The deterministic agent is only interested
in the red items, it will determine which is the closest to itself
and will then proceed to adjust the x-coordinate and then the y-
coordinate in order to reach it. Once all red items have been taken,
the deterministic agentwill stay still inwhatever position it happens
to be at that timestep and wait the end of the episode.
The players can move in the canonical 4 directions within the grid
or they can take no action and stay still. Attempting to move beyond
the boundary of the grid will result in no change in position for the
agent and a wall penalty will be given. Whenever a player enters
the cell occupied by an item it will consume that item, even if it
is not interested in it. Both agents can be in the same cell at the
same time and will not interact in any way with one another. In
cases where both agents enter the same cell containing an item, the
deterministic agent "arrives first" and consumes the item.

There are 6 different objectives which the environment keeps
track of: time and wall penalties, item collection for the agent (dif-
ferentiated by colour) and a last entry for the other agent taking
a red item specifically. The environment keeps track of these ob-
jectives in a CRV r ∈ N6. As discussed in Section 2.2, at each
time-step the CRV is mapped via the utility function to obtain a
scalar utility; the difference between this value and the equivalent
one obtained at the previous time-step is stored in the replay buffer
as the time-step scalar reward to be used for gradient computations.
The environment can feed up to three different observations to the
agent. Firstly, a view of the status of the gridworld is provided; this
is fed to the agent as an RGB image not dissimilar by the one in
Figure 1. Following [6], three such images - corresponding to the
current time-step and the previous two - are stacked together and
fed to the CNN component of the agent’s model. For the initial
time-steps, the undefined frames are set to 0 on all pixels (black
image).
As discussed in Section 2.3, the agent also receives a UFP as a vector.
The dimensionality of this vector varies depending on the utility
function set that is used to train the specific agent. Finally, the agent
may or may not be provided with the cumulative rewards vector
depending on the experiment being conducted. As seen in Section
2.2, this should actually be required for non-linear utilities, but both
approaches were tested for comparisons.

3.2 Agent model
Various different agent models were used across all of the experi-
ments run; however, the core structure behind each one was identi-
cal. As previously mentioned, a DQN approach was followed, where
a neural network outputs a Q-value for every action possible in
the current state and the argmax of these Q-values is used as the
chosen action for the time-step. Exploration is enforced with the
use of an 𝜖-greedy algorithm that forces the agent to take a random
action with probability 1 − 𝜖 .
The general structure of the NN follows that used in [6]: the three
RGB frames are fed as input to a convolutional neural network
composed of two convolutional layers with a 3x3 kernel and 256

filters each. The features that are obtained are then flattened and
concatenated with the UFP and (optionally, depending on the spe-
cific experiment) with the CRV; this long vector of inputs is then
passed to a fully-connected neural network with varying number
of layers and nodes per layer. The ReLU activation function is used
to add non-linearity at all layers except the last one which is sim-
ply a 5-dimensional, linear, fully-connected output5. A graphical
representation of this general structure is provided in Figure 2.

Figure 2: Architecture for tunable agents in this work.

Four different agent models were used for training and evaluation
in all the experiments. The only difference between them was the
number of layers and nodes per layer in the FCNN part of the
model. Within the scope of this work, they will be identified with
the following shortened names:

• Tiny: identifying a model with two hidden layers with 64
nodes each.

• Small: identifying a model with three hidden layers with 128,
128 and 64 nodes respectively.

• Medium: identifying a model with five hidden layers with
256, 128, 128, 64 and 64 nodes respectively.

• Large: identifying a model with six hidden layers with 512,
256, 256, 128, 128 and 64 nodes respectively.

3.3 Utility function sets
Following the work done in [6], the first set of utility functions
used was

U𝐿 =

{
𝑢 : R6 → R

���� ∃ w ∈ [−20, 20]6 : 𝑢 (r) = w · r,
𝑤1 = −1 ∧𝑤2 = −5

}
(9)

This is what will be referred to as the set of linear utility functions.
During training, the utility functions inU𝐿 were sampled with a
discrete uniform probability distribution with step 5; i.e. the weights
could only take values in {−20,−15,−10,−5, 0, 5, 10, 15, 20}. Note
that the first two weights have a fixed value of -1 and -5; they
respectively indicate the penalty for time and hitting a wall.
A second set of utility functions is that of threshold utilities; for-
mally it is defined as

U𝑇ℎ =

 𝑢 : R6 → R

������ ∃ w ∈ [−20, 20]6, t ∈ N6≤3 :
𝑢 (r) = ∑𝑛

𝑖=1 (𝑤𝑖𝑟𝑖 · 1𝑟𝑖 ≥𝑡𝑖),
𝑤1 = −1 ∧𝑤2 = −5 ∧ 𝑡1 = 𝑡2 = 0


(10)

5The dimensionality of the output must match the number of available actions for a
DQN model.

Once again, during training the weights were sampled with a dis-
crete probability distributions with step 5, whilst the thresholds
were sampled discretely in N≤3. Note that the weights for time and
wall penalties were fixed as before and their respective thresholds
were also fixed at 0 (meaning there would always be a penalty). It is
important to highlight thatU𝐿 ⊂ U𝑇ℎ since taking all thresholds
to be 0 yields a utility function 𝑢 that is mathematically equivalent
to a linear function; the reverse does not hold.
An intuitive variation on threshold utilities is that of their cor-
responding dual threshold utility function. These functions are
conceptually very similar to threshold utilities with the exception
of increasing prior to reaching the threshold and then remaining
constant. Formally, their set is defined as

U𝐷𝑇ℎ =

 𝑢 : R6 → R

������ ∃ w ∈ [−20, 20]6, t ∈ N6≤31 :
𝑢 (r) = ∑𝑛

𝑖=1 (𝑤𝑖𝑟𝑖 · 1𝑟𝑖 ≤𝑡𝑖 +𝑤𝑖𝑡𝑖 · 1𝑟𝑖>𝑡𝑖),
𝑤1 = −1 ∧𝑤2 = −5 ∧ 𝑡1 = 𝑡2 = 31


(11)

Sampling withinU𝐷𝑇ℎ is done identically toU𝑇ℎ , though the dual
threshold for time and wall penalties are now set to 31 (to ensure
that a penalty is always applied). Again, it should be noted that
U𝐿 ⊂ U𝐷𝑇ℎ by setting all dual thresholds to a sufficiently high
value (in this setting 𝑡𝑖 ≥ 31 ∀ 𝑖 works).
The last type of utility functions used in this work was first intro-
duced in [3], and will be referred to within the scope of this work
as target utilities. Their set is defined as

U𝑇𝑎 =

 𝑢 : R6 → R

��������
∃ r† ∈ N6≤31 :
𝑢 (r) = argmax

𝑐∈R
: r − 𝑐

r†
|r† |

≥ 0,

𝑟†1 = 𝑟†2 = 31

 (12)

The vector r† is referred to as the target vector, though it is impor-
tant to point out that the scalar utility value is not maximized when
the target is reached, but rather increases continuously along the
target’s direction. Also note that for this type of utility function
to work properly all entries must be increasing and non-negative;
to this aim, the first two entries of the CRV fed are multiplied by
-1 and 31 is then added to them6. Sampling was done with a uni-
form discrete distribution in in N≤3 for the non-fixed entries of the
target.
In all cases, attention was paid to avoid the marginal cases in which
utility functions with no possible positive feedback would be sam-
pled. As explained in Section 3.1, the condition for terminating
an episode is utility-dependent and all-negative utility functions
would simply result in the immediate termination of the episode.

3.4 Evaluation
When training several agents on entirely different sets of utility
functions the problem of evaluating and comparing them is non-
trivial. The difficulties in carrying out this task arise from several
different considerations, and there is no current literature (to the
authors’ knowledge) that comprehensively compares the effects of
learning under a range of different non-linear utility functions.

6Their maximum negative value is 31, hence adding 31 to ensure they are always
non-negative.

A first important fact to realize is that utility functions are not
simply some other information given to the agent to influence
its behaviour; the utility function effectively decides what success
means for the agent. Therefore when training an agent on differ-
ent utility functions, one is actually training it on different games
with different goals. Comparing tunable agents which have been
trained on different sets of utility functions is yet more arduous as
these agents may well have been trained to pursue different sets of
objectives, and none of these is in absolute terms superior to the
others.
Furthermore, even if one was to evaluate an agent on a sufficiently
large number of episodes with utilities sampled from a set U with
probability distribution 𝑃 , the empirical distribution𝑈U,𝑃 of end-
of-episode scalar utility values obtained would be dependent on U
and 𝑃 . Consequently, any possible statistic 𝑇 computed on 𝑈U,𝑃

(e.g. mean or standard error) would also be dependent on them, and
would be fundamentally incomparable with statistics derived from
any other empirical distribution𝑈 ′

U′,𝑃 ′ whereU ≠ U ′ ∨ 𝑃 ≠ 𝑃 ′.
Two simple examples of this issue are provided below.

Example 1. LetU be defined similarly to Equation 8 as

U = {𝑢 : R𝑛 → R | ∃ w ∈ [−20, 20]𝑛 : 𝑢 (V) = w · V}
Where the weights have been restricted to all being in the range
[−20, 20]. Let U ′ similarly be

U ′ = {𝑢 : R𝑛 → R | ∃ w ∈ [−40, 40]𝑛 : 𝑢 (V) = w · V}
And let 𝑃 and 𝑃 ′ be the uniform distributions over the two ranges
of U and U ′. Consider a fixed policy7 𝜋 that takes a utility 𝑢 as
part of its observations of the environment 𝐸 and behaves so as
to maximize 𝑢. Sampling 𝑁 episodes from 𝐸 following policy 𝜋

with utilities sampled fromU andU ′ according to 𝑃 and 𝑃 ′, one
obtains two empirical distributions 𝑈 and 𝑈 ′ of end-of-episode
scalar utility. Given the definitions set above one would expect the
empirical means over𝑈 and𝑈 ′ to be

1
𝑁

∑
𝑥 ∈𝑈

𝑥 ≃ 1
2

(
1
𝑁

∑
𝑥 ∈𝑈 ′

𝑥

)
Example 2. LetU be defined as

U = {𝑢 : R𝑛 → R | ∃ w ∈ [−20, 0)𝑛 : 𝑢 (V) = w · V}
Where the weights have been restricted to all being in the range
[−20, 0). Let U ′ similarly be

U ′ = {𝑢 : R𝑛 → R | ∃ w ∈ (0, 20]𝑛 : 𝑢 (V) = w · V}
And let 𝑃 and 𝑃 ′ be the uniform distributions over the two ranges
of U and U ′. Following the same procedure as in the previous
example the empirical means over𝑈 and𝑈 ′ are going to be

1
𝑁

∑
𝑥 ∈𝑈

𝑥 < 0 <
1
𝑁

∑
𝑥 ∈𝑈 ′

𝑥

In both of the examples above, it is important to observe that the
same policy 𝜋 is expected to yield different average utility values
even though the behaviour could be unchanged between the two
utility function sets U andU ′.
7This would be a trained tunable agent that operates using a greedy policy in our
setting.

To complicate matters further, evaluating a tunable agent trained
on (U, 𝑃) by feeding it approximations of utility functions coming
from (U ′, 𝑃 ′) cannot really be done in a rigorous way.

3.4.1 Metrics. In light of the issues presented above, two distinct
methods to meaningfully evaluate agents and compare their be-
haviours were chosen. To start with, simple results for average
end-of-episode utility values are shown; these present the afore-
mentioned problems and are mostly useful only for evaluations
between agents that are tested on the same tuple (U, 𝑃). As ob-
served in Section 3.3, U𝐿 ⊂ U𝑇ℎ and it is therefore possible to
feed linear utilities to agents trained on threshold utilities so these
results are also presented and discussed.
The second type of results presented looks instead at the end-of-
episode CRVs that the agent obtains. Given that the object of study
are tunable agents whose objective is to learn maximizing policies
for many different utility functions, it makes sense to analyze the
diversity of reward vectors that they are capable of achieving.
Of course, sheer diversity is not a necessarily desirable feature thus
the partial ordering introduced in Definition 1 is used to measure
the number of non-dominated reward vectors. These vectors are
of interest because of the utility functions’ monotonicity property
defined in Equation 3; this implies that non-dominated vectors must
provide non-dominated utility values for some utility function 𝑢.
This metric is therefore relevant by representing the ability of an
agent to not only display varied behaviour, but also behaviour that
the agent itself cannot improve upon. Most importantly, sets of
non-dominated vectors can also be compared between agents that
have been trained and/or evaluated on different (U, 𝑃) tuples, since
domination of vectors implies domination of utility values regard-
less of the utility function being used. The comparisons between
sets of non-dominated vectors coming from different agents, in-
forms on how much of the intra-agent-optimal behaviour that is
learnt, is also inter-agent-optimal.
In the coming sections, when using the term non-dominated CRVs
it is implied that these are non-dominated only at the agent-level; i.e.
the agent that produced them has not shown to be able to improve
upon them. Considerations and results are also presented regarding
combined non-dominated CRVs which are instead non-dominated
among the entirety of behaviour displayed by all the agents.

3.4.2 Fixed environment. A key observation to be mindful of is that
the end-of-episode reward vector that an agent is able to achieve,
does not depend solely on the agent’s choices, but it is also affected
by the specific random initialization of the environment. As ex-
plained in Section 3.1, the coloured items that the agent seeks are
randomly distributed in the center of the grid. The presence of the
deterministic agent makes it so that in certain cases some items
might be unobtainable no matter what actions the DQN agent takes.
To control this variability, a fixed environment was constructed
(shown in Figure 3) and agents were evaluated with the aforemen-
tioned reward vector metrics on it. In selecting this environment,
attention was paid to create one where the agent has complete

control over whether to take any item or not; with the correct be-
haviour, the agent can choose to take all the items, only some or it
can also choose to leave some red items to the deterministic agent8.

Figure 3: Image representation of the fixed environment.

It is important to highlight two key features of this evaluation.
Firstly, the samples obtained in the fixed environment vary only by
agent being evaluated and utility function provided at the beginning
of the episode. Secondly, the utility functions sampled are fixed
for each set; i.e. a fixed discrete subset of utility functions was
sampled from the different sets of utility functions described in
Section 3.3. All agents being evaluated on the fixed environment
with a given utility function set, would therefore be exposed to the
same utility functions. Note that this does not mean that all agents
were evaluated on the same utility function subsets; this is because
certain agents could not be shown utility functions belonging to
other sets9.
A problem that arises specifically with agents trained with U𝑇𝑎 ;
because of the nature of these utility functions, there are substan-
tially fewer functions that can be sampled. When sampling random
environments this is not a hindrance to obtaining a varied dataset,
since the randomness in the environment can offset this issue. How-
ever, on a fixed environment and operating with the same greedy
policy, there are very few samples that can be taken from an agent.
Therefore, target agents had about 1000 times less episodes sampled
for them on the fixed environment. Their results are still presented,
but they aren’t really comparable to the agents evaluated on the
other sets because of this huge discrepancy.
Evaluating on a single fixed environment has definitely some draw-
backs because it unfairly puts much weight on this specific envi-
ronment, but - given the large number of experiments - it would
have been too high a computational burden to sample significantly
more fixed environments and multitudes of utilities for each one.
Agents are however not specially trained for this environment so
they all start from a common ground on this point.

4 EXPERIMENTAL RESULTS
It is important to distinguish between training and evaluation in
the results that will be presented in this section. For training, three
hyper-parameters with discrete values were taken:

• CRVflag: taking values true/false and determiningwhether
the agent to be trained would receive the CRV as input. If
true, the CRV would be passed to the agent as shown in

8Remember that as stated in Section 3.1.1, the deterministic agent is only interested in
red items.
9More detailed discussions of this can be found in Sections 3.3 and 3.4

Figure 2; if false, it would simply be excluded from the
concatenation occurring prior to the FCNN.

• Agent model: the four models that were used are described
in Section 3.2.

• Utility function set: the set of utility functions (and corre-
sponding probability distribution 𝑃) with which the agent
was trained. They are described in greater detail in Section
3.3.

The Cartesian product of these three hyper-parameters was con-
structed and experiments for every element of it were run six differ-
ent times; i.e. six different agents would be initialized and trained
for every choice of model, utility function set, and CRV flag.
After having trained all these different agents, each one was tested
using its greedy policy in two different ways:

• Sampling 100𝑘 random episodes and storing the end-of-
episode utility value.

• Sampling ∼180𝑘 episodes from the fixed environment (see
Section 3.4.2) and storing the end-of-episode CRV10.

The results of these testing procedures where then used to compute
the metrics discussed in Section 3.4.1. Averages and standard errors
were computed over the six different agents that were trained on
all configurations. The tables to follow will denote the experiments
with dash-separated abbreviations; CR is used to identify exper-
iments where the CRV was fed as input to the agent, whilst the
other abbreviations denote the utility set with which the agent
was trained11. Furthermore, as discussed in Section 3.3, agents
trained onU𝑇ℎ andU𝐷𝑇ℎ can be fed functions that are mathemati-
cally equivalent to functions inU𝐿 ; there are therefore evaluations
where the results of this are shown and are denoted by having
"L-" prepended to the utility set on which the agent was trained 12.
In the coming sections, the expressions "linear agents", "threshold
agents", etc. will be used as shorthand to refer to agents that were
trained on those utility function sets.

4.1 Average utility results
The results for average end-of-episode utilities across models are
shown in Table 1. For the reasons discussed in Section 3.4, the results
obtained for different sets of utilities should not be compared.
Larger models improve performance over smaller ones for linear
agents, but the effect is mixed or opposite for non-linear ones.
This is due to the fact that with larger models agents seem to
get stuck in sub-optimal policies and go through a much noisier
training process. This is a problem that in rare cases plagues linear
agents too, but for non-linear agents becomes more pronounced.
Threshold agents in particular do not seem to be as affected by this
as dual threshold and target agents; this is likely due to the fact
that threshold utilities in this environment should lead the agent to
behave very similarly to the linear case. Dual threshold and target
utilities are instead more radically different and this could lead to
increased complexity in figuring out what behaviour is optimal. It

10As noted in Section 3.4.2, agents trained on target utilities are actually evaluated on
a much lower number of episodes and their fixed environment results are thus not
comparable with the other agents.
11They follow the naming schemes in the subscript of U in section 3.3.
12e.g. L-Th identifies an agent trained on threshold utilities that was evaluated on
linear ones.

Model
Setting

Tiny Small Medium Large

L 12.8 (±0.3) 15.8 (±0.2) 20.9 (±0.3) 24.3 (±0.1)
CR-L 13.2 (±0.4) 16.3 (±0.3) 19.9 (±0.2) 22.1 (±0.2)
Th 4.9 (±1.3) 9.6 (±0.6) 11.3 (±0.5) 12.9 (±0.4)
CR-Th 9.0 (±0.6) 9.9 (±0.4) 10.8 (±0.6) 11.6 (±0.6)
DTh 6.8 (±0.4) 8.2 (±0.2) 9.6 (±0.3) 4.4 (±4.6)
CR-DTh 7.3 (±0.3) 8.8 (±0.3) 8.1 (±0.4) 8.9 (±0.5)
Ta 16.9 (±0.7) 17.4 (±0.2) 13.2 (±1.0) 0.5 (±0.0)
CR-Ta 17.1 (±0.4) 16.8 (±0.3) 10.7 (±1.9) 4.4 (±1.3)
L-Th 8.5 (±0.9) 11.2 (±0.4) 12.6 (±0.6) 13.9 (±0.8)
CR-L-Th 11.6 (±0.5) 12.3 (±0.5) 13.3 (±0.4) 13.9 (±0.9)
L-DTh 9.3 (±0.7) 11.7 (±0.4) 14.4 (±0.2) 7.3 (±5.5)
CR-L-DTh 10.6 (±0.5) 12.9 (±0.7) 11.5 (±0.5) 12.0 (±1.0)

Table 1: Average end-of-episode utility results over ran-
domly initialised environments.

is likely that spending more time in testing different training hyper-
parameters (duration, learning rate, regularization, etc.) could solve
this issue; the asymmetry between linear and non-linear agents is,
however, indicative of the increased difficulty of solving this task
even in a relatively simple environment.
It is also worth noting that threshold and dual threshold agents
are not competitive with linear agents when evaluated on linear
utilities. This is to be expected since linear agents could specialize
on those utilities during training, however the discrepancy grows
substantially for larger models. Non-linear agents thus seem only
to be capable of finding some general policies to apply for linear
utilities, and fail to improve and differentiate it even when given
more complexity.
Providing the CRV as input to the agent has mixed results; some-
times it affects performance slightly whilst in other cases it has a
larger impact. For linear agents, a minor impact is expected since
the CRV is not really necessary; it is thus just a further input that
needs to be processed by the model. For the smallest model it has a
positive impact on threshold agents. It is possible that larger mod-
els find ways to make up for this lack of information which is not
accessible to the smaller model. Given that the initial number of
each item is an invariant for all episodes, one possible way that an
agent might compensate the lack of CRV information is to estimate
who (either itself or the deterministic agent) took each item that is
missing at the current time-step. The CRV input also has a mod-
erate impact on helping the larger models for dual threshold and
target agents; providing it seems to mildly aid their training, and
they more often manage to not get stuck in sub-optimal policies.

4.2 Fixed environment results
Table 2 shows the number of unique end-of-episode CRVs that
agents were able to produce; this is just a metric for dispersion of
the models’ behaviour since uniqueness of policies is not generally
desirable in and of itself. The number of these unique vectors that
are non-dominated among the displayed behaviour is displayed in
Table 3.
Table 2 shows data that is very noisy in general. Non-linear utilities
(with the already discussed exception of the target utility) give rise
to a significantly higher number of unique policies, particularly so
for larger models. Table 3 though shows that this high variability
does not translate to much larger numbers of non-dominated CRVs.

Model
Setting

Tiny Small Medium Large

L 155.0 (±12.8) 219.7 (±46.7) 259.0 (±36.9) 254.0 (±17.3)
CR-L 216.0 (±18.2) 241.5 (±21.1) 291.0 (±17.4) 343.7 (±24.1)
Th 147.0 (±16.2) 271.3 (±45.1) 450.2 (±52.7) 501.7 (±45.9)
CR-Th 186.2 (±26.3) 226.3 (±17.6) 406.8 (±34.2) 465.2 (±28.6)
DTh 277.2 (±19.3) 404.0 (±81.1) 378.0 (±47.3) 270.3 (±52.4)
CR-DTh 334.7 (±31.9) 402.3 (±18.8) 367.8 (±29.1) 456.7 (±44.9)
Ta 22.2 (±4.7) 20.3 (±2.9) 28.8 (±3.8) 15.2 (±3.8)
CR-Ta 28.7 (±4.5) 20.5 (±2.2) 23.2 (±3.6) 24.0 (±5.4)
L-Th 116.8 (±14.4) 221.5 (±35.3) 314.2 (±29.8) 378.2 (±36.9)
CR-L-Th 144.8 (±22.8) 190.7 (±12.3) 289.0 (±23.3) 358.0 (±19.4)
L-DTh 152.2 (±16.7) 169.0 (±8.9) 212.7 (±31.7) 174.0 (±36.5)
CR-L-DTh 171.5 (±22.5) 200.0 (±12.8) 249.3 (±16.6) 296.3 (±21.3)

Table 2: Number of unique end-of-episode CRVs in the fixed
environment.

Model
Setting

Tiny Small Medium Large

L 14.8 (±0.7) 17.3 (±1.3) 16.7 (±0.5) 18.2 (±0.6)
CR-L 16.0 (±0.5) 16.5 (±0.7) 18.8 (±0.8) 20.5 (±1.3)
Th 13.5 (±0.9) 16.5 (±0.5) 20.5 (±1.3) 20.2 (±0.8)
CR-Th 16.3 (±0.8) 15.0 (±1.0) 18.0 (±1.1) 20.3 (±0.6)
DTh 23.5 (±1.3) 27.3 (±1.7) 25.2 (±1.6) 20.3 (±3.5)
CR-DTh 25.0 (±1.4) 24.0 (±1.4) 23.2 (±1.0) 25.7 (±1.1)
Ta 8.8 (±1.4) 9.0 (±0.8) 9.7 (±0.7) 3.0 (±0.5)
CR-Ta 10.3 (±1.6) 8.5 (±0.8) 7.8 (±0.8) 6.3 (±1.5)
L-Th 13.5 (±1.1) 16.8 (±0.8) 18.5 (±0.9) 18.0 (±0.7)
CR-L-Th 13.8 (±0.4) 15.5 (±0.8) 16.2 (±1.1) 19.8 (±0.8)
L-DTh 14.8 (±0.6) 16.8 (±1.0) 18.3 (±1.4) 14.5 (±2.3)
CR-L-DTh 14.0 (±1.1) 15.5 (±0.9) 14.3 (±0.9) 18.5 (±0.5)

Table 3: Number of unique non-dominated end-of-episode
CRVs in the fixed environment.
The data in this table is quite noisy too, but it can be seen that
dual threshold agents in particular do manage to reach a larger
number of non-dominated CRVs (when they don’t under-perform
because of getting stuck in sub-optimal policies). This is probably
due to how the end-of-episode condition is determined; linear and
threshold agents either have to collect all items of a certain colour
(if they have a positive weight for that colour) or none (if the weight
is non-positive) in order to end the episode. Dual threshold agents
can instead only take some of the items of a given colour and save
on time, which unlocks new possible end-of-episode reward vectors.
This feature is also there for target agents though their sampling
problem13 does not allow it to emerge from the data in this table.
The percentage of times that the agent reached a combined non-
dominated end-of-episode CRV is given in Table 4. The numbers are
quite low across the board, but dual threshold and target agents and
definitely stand out with significantly higher percentages. Table 5
shows however that their results are mixed; while they do reach
often combined non-dominated CRVs, they often reach the wrong
one for the utility function that they are operating under. Linear
and threshold agents instead make less of these mistakes when they
reach non-dominated CRVs.
Finally, the percentage coverage of combined non-dominated CRVs
for each agent is given in Table 6. Following the results shown in the
previous tables, dual threshold and target agents generally cover a
wider range of these, particularly for the intermediate model sizes.
13Discussed in Section 3.4.2

Model
Setting

Tiny Small Medium Large

L 11.3 (±3.0) 8.8 (±1.0) 13.5 (±1.8) 18.0 (±1.1)
CR-L 10.2 (±2.2) 8.4 (±0.5) 13.7 (±2.6) 12.9 (±0.9)
Th 11.4 (±3.9) 12.8 (±2.9) 10.8 (±2.3) 12.4 (±0.8)
CR-Th 8.3 (±1.9) 9.7 (±1.5) 13.1 (±2.2) 12.3 (±1.4)
DTh 17.3 (±3.6) 12.6 (±3.1) 30.6 (±2.4) 28.0 (±6.5)
CR-DTh 24.0 (±2.8) 19.1 (±3.0) 31.6 (±2.2) 22.7 (±1.9)
Ta 16.5 (±9.1) 21.0 (±7.6) 28.0 (±4.6) 0.0 (±0.0)
CR-Ta 11.5 (±3.9) 22.3 (±8.6) 25.7 (±7.5) 10.4 (±4.3)
L-Th 17.6 (±5.9) 10.9 (±2.0) 9.4 (±2.1) 12.0 (±1.8)
CR-L-Th 10.5 (±2.5) 9.7 (±1.6) 11.3 (±1.7) 11.1 (±2.0)
L-DTh 5.4 (±1.7) 6.8 (±3.8) 13.1 (±2.2) 11.8 (±2.6)
CR-L-DTh 11.5 (±4.4) 8.6 (±2.9) 17.3 (±3.2) 13.0 (±2.6)

Table 4: Percentage of episodes where a combined non-
dominated end-of-episode CRVs was achieved in the fixed
environment.

Model
Setting

Tiny Small Medium Large

L 34.5 (±7.8) 58.2 (±7.4) 62.4 (±4.3) 64.2 (±4.1)
CR-L 40.5 (±3.7) 67.4 (±4.8) 60.3 (±7.6) 64.3 (±5.7)
Th 23.0 (±7.5) 50.7 (±9.3) 56.8 (±7.0) 63.7 (±4.0)
CR-Th 36.3 (±7.3) 39.5 (±6.6) 56.4 (±7.0) 57.6 (±3.6)
DTh 36.7 (±2.3) 38.7 (±3.8) 38.7 (±2.8) 33.4 (±2.5)
CR-DTh 35.0 (±2.7) 44.5 (±3.7) 35.4 (±2.3) 32.7 (±3.1)
Ta 14.3 (±5.4) 11.0 (±4.0) 22.3 (±4.9) 0.0 (±0.0)
CR-Ta 10.3 (±2.9) 9.3 (±4.3) 16.4 (±4.7) 10.4 (±3.8)
L-Th 24.0 (±8.8) 46.2 (±11.3) 47.6 (±7.1) 41.2 (±6.7)
CR-L-Th 26.9 (±4.3) 44.8 (±7.2) 54.0 (±8.1) 49.5 (±5.8)
L-DTh 26.0 (±10.5) 42.9 (±11.1) 32.2 (±5.1) 28.1 (±7.7)
CR-L-DTh 25.1 (±8.6) 41.4 (±6.2) 22.4 (±4.8) 24.3 (±3.5)

Table 5: Percentage of episodes (among those with a
non-dominated CRV) where the correct combined non-
dominated end-of-episode CRV is reached in the fixed en-
vironment.

Model
Setting

Tiny Small Medium Large

L 30.4 (±4.5) 25.5 (±3.2) 38.2 (±5.8) 61.1 (±6.2)
CR-L 25.5 (±3.7) 24.7 (±5.0) 45.3 (±5.6) 43.9 (±7.7)
Th 30.8 (±3.5) 25.2 (±3.7) 23.9 (±4.2) 42.3 (±2.9)
CR-Th 27.3 (±4.9) 23.3 (±4.0) 35.4 (±3.1) 39.8 (±6.3)
DTh 29.6 (±4.5) 24.2 (±3.7) 51.5 (±2.2) 56.5 (±11.5)
CR-DTh 33.6 (±3.4) 33.4 (±2.8) 53.6 (±1.9) 59.8 (±3.8)
Ta 43.6 (±11.9) 52.0 (±10.6) 61.1 (±5.7) 0.0 (±0.0)
CR-Ta 40.2 (±7.4) 51.0 (±13.2) 64.8 (±10.4) 44.0 (±15.8)
L-Th 33.8 (±4.8) 20.8 (±3.6) 20.1 (±3.9) 37.5 (±2.5)
CR-L-Th 33.0 (±6.7) 20.1 (±2.9) 33.5 (±4.9) 30.2 (±5.4)
L-DTh 17.4 (±2.9) 14.9 (±4.5) 40.1 (±1.9) 54.8 (±10.6)
CR-L-DTh 26.3 (±2.6) 22.8 (±4.9) 47.8 (±1.3) 54.0 (±4.2)

Table 6: Percentage of the non-dominated vectors from Ta-
ble 7 that were found by the agent.

For reference, the combined non-dominated CRVs that were found
across all agents in the fixed environment are listed in Table 7.

5 CONCLUSION AND FUTUREWORK
In this paper, a first attempt at training tunable agents with non-
linear utility functions was made. Several key challenges in training
and evaluating with such a framework were identified and dis-
cussed, and possible solutions were proposed. The approaches and

[5, 0, 0, 2, 0, 0] [10, 0, 1, 0, 2, 3] [12, 0, 3, 2, 1, 1]
[5, 0, 0, 2, 0, 0] [10, 0, 1, 1, 2, 2] [12, 0, 3, 3, 1, 0]
[7, 0, 1, 1, 0, 0] [10, 0, 2, 2, 1, 1] [13, 0, 2, 2, 2, 1]
[8, 0, 0, 2, 1, 1] [10, 0, 2, 3, 1, 0] [13, 0, 2, 3, 2, 0]
[8, 0, 1, 2, 0, 1] [10, 0, 3, 0, 1, 3] [13, 0, 3, 0, 2, 3]
[9, 0, 0, 0, 2, 2] [10, 0, 3, 1, 1, 2] [13, 0, 3, 1, 2, 2]
[9, 0, 1, 2, 1, 1] [11, 0, 1, 2, 2, 1] [14, 0, 3, 2, 2, 1]
[9, 0, 1, 2, 1, 1] [11, 0, 1, 3, 2, 0] [15, 0, 3, 3, 2, 0]
[9, 0, 1, 3, 1, 0] [11, 0, 2, 0, 2, 3]
[9, 0, 2, 1, 1, 2] [11, 0, 2, 1, 2, 2]

Table 7: The combined set of non-dominated vectors found
in the fixed environment by agent using all utility function
type and UFP combinations.

experiments presented are by no mean exhaustive in terms of the
possible strategies that could be adopted; this research topic could
and should be approached with a plethora of different methods,
while paying close attention to the advantages and shortcomings
of each one.
In the results shown in Section 4, non-linear agents have proven
their potential to expand the range of valuable non-dominated
vectors that can be reached and of using them more consistently
than linear agents. Their usage of them is however still plaguedwith
mistakes and challenges in the training process. The target utility
seems particularly adept at uncovering combined non-dominated
CRVs, though its performance is lacklustre when it comes to using
them effectively.
Future work should focus on both expanding the sets of non-linear
utilities, while finding ways of not having the agents lost in their
complexity. One possible way to attempt this would be to sepa-
rate the agent’s model into two stages: a first one is responsible for
predicting the vector Q-values (instead of their utility-mapped coun-
terparts), whilst the second would be responsible of determining
an approximation of the utility function (via a FCNN). The model
thus constructed would then have two outputs and two different
gradients flowing through parts of it.

REFERENCES
[1] Robert Aumann. 1987. Correlated Equilibrium as an Expression of Bayesian

Rationality. Econometrica 55, 1 (1987), 1–18. https://EconPapers.repec.org/RePEc:
ecm:emetrp:v:55:y:1987:i:1:p:1-18

[2] Kalyanmoy Deb and Deb Kalyanmoy. 2001. Multi-Objective Optimization Using
Evolutionary Algorithms. John Wiley & Sons, Inc., USA.

[3] Conor Francis Hayes, Mathieu Reymond, Diederik Marijn Roijers, Enda Howley,
and Patrick Mannion. 2021. Risk Aware and Multi-Objective Decision Making
with Distributional Monte Carlo Tree Search. In Proceedings of the Adaptive and
Learning Agents Workshop (at AAMAS 2021). https://arxiv.org/abs/2102.00966

[4] Conor F. Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström,
Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zint-
graf, Richard Dazeley, Fredrik Heintz, Enda Howley, Athirai A. Irissappane,
Patrick Mannion, Ann Nowé, Gabriel Ramos, Marcello Restelli, Peter Vam-
plew, and Diederik M. Roijers. 2021. A practical guide to multi-objective re-
inforcement learning and planning. arXiv preprint arXiv:2103.09568 (2021).
https://arxiv.org/abs/2103.09568

[5] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. 1996. Rein-
forcement Learning: A Survey. CoRR cs.AI/9605103 (1996). https://arxiv.org/abs/
cs/9605103

[6] Johan Källström and Fredrik Heintz. 2019. Tunable Dynamics in Agent-Based
Simulation using Multi-Objective Reinforcement Learning.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529–533. http://dx.doi.org/10.1038/nature14236

https://EconPapers.repec.org/RePEc:ecm:emetrp:v:55:y:1987:i:1:p:1-18
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:55:y:1987:i:1:p:1-18
https://arxiv.org/abs/2102.00966
https://arxiv.org/abs/2103.09568
https://arxiv.org/abs/cs/9605103
https://arxiv.org/abs/cs/9605103
http://dx.doi.org/10.1038/nature14236

[8] J.F. Nash. 1951. Non-cooperative Games. Annals of Mathematics 54, 2 (1951),
286–295.

[9] Diederik M. Roijers, Denis Steckelmacher, and Ann Nowé. 2020. Multi-objective
reinforcement learning for the expected utility of the return. 2018 Adaptive
Learning Agents, ALA 2018 - Co-located Workshop at the Federated AI Meeting,
FAIM 2018 ; Conference date: 14-07-2018 Through 15-07-2018.

[10] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. 2013. A Survey of Multi-
Objective Sequential Decision-Making. Journal of Artificial Intelligence Research
48 (Oct 2013), 67–113. https://doi.org/10.1613/jair.3987

[11] Roxana Rădulescu, Patrick Mannion, Diederik Roijers, and Ann Nowe. 2019.
Multi-objective multi-agent decision making: a utility-based analysis and survey.
Autonomous Agents and Multi-Agent Systems 34 (12 2019). https://doi.org/10.
1007/s10458-019-09433-x

[12] Roxana Rădulescu, Patrick Mannion, Yijie Zhang, Diederik M. Roijers, and Ann
Nowé. 2020. A utility-based analysis of equilibria in multi-objective normal-form
games. The Knowledge Engineering Review 35 (2020). https://doi.org/10.1017/

s0269888920000351
[13] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-

duction (second ed.). The MIT Press. http://incompleteideas.net/book/the-book-
2nd.html

[14] Peter Vamplew, John Yearwood, Richard Dazeley, and Adam Berry. 2008. On
the Limitations of Scalarisation for Multi-objective Reinforcement Learning of
Pareto Fronts. 372–378. https://doi.org/10.1007/978-3-540-89378-3_37

[15] H. Yu and H. M. Liu. 2013. Robust Multiple Objective Game Theory. Journal
of Optimization Theory and Applications 159, 1 (October 2013), 272–280. https:
//doi.org/10.1007/s10957-012-0234-z

[16] Luisa Zintgraf, Timon Kanters, Diederik Roijers, Frans Oliehoek, and Philipp
Beau. 2015. Quality Assessment of MORL Algorithms: A Utility-Based Approach.

[17] Luisa M Zintgraf, Diederik M Roijers, Sjoerd Linders, Catholijn M Jonker, and
Ann Nowé. 2018. Ordered Preference Elicitation Strategies for Supporting Multi-
Objective Decision Making. arXiv:1802.07606 [cs.LG]

https://doi.org/10.1613/jair.3987
https://doi.org/10.1007/s10458-019-09433-x
https://doi.org/10.1007/s10458-019-09433-x
https://doi.org/10.1017/s0269888920000351
https://doi.org/10.1017/s0269888920000351
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1007/978-3-540-89378-3_37
https://doi.org/10.1007/s10957-012-0234-z
https://doi.org/10.1007/s10957-012-0234-z
https://arxiv.org/abs/1802.07606

	Abstract
	1 Introduction
	2 Background
	2.1 Multi-Objective Reinforcement Learning
	2.2 Learning in the MORL setting
	2.3 Tunable Agents

	3 Experimental design
	3.1 Gathering environment
	3.2 Agent model
	3.3 Utility function sets
	3.4 Evaluation

	4 Experimental results
	4.1 Average utility results
	4.2 Fixed environment results

	5 Conclusion and Future Work
	References

