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ABSTRACT
Balancing multiple competing and conflicting objectives is an es-
sential task for any artificial intelligence tasked with satisfying
human values or preferences. Conflict arises both from misalign-
ment between individuals with competing values, but also between
conflicting value systems held by a single human. Starting with
principles of loss-aversion and maximin, we designed a set of soft
maximin function approaches to multi-objective decision-making.
Bench-marking these functions in a set of previously-developed
environments, we found that one new approach in particular, ‘split-
function exp-log loss aversion’, learns faster than the thresholded
alignment objective method, the state of the art described in [22].
We explore approaches to further improve multi-objective decision-
making using soft maximin approaches.
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1 INTRODUCTION
A key aim of AI Safety research is to align AI systems to the fulfill-
ment of human preferences [5, 17] or values. Prior commentary has
described at least three reasons why this is a multi-objective (MO)
problem. First, there are a variety of ethical, legal, and safety-based
frameworks [21], and alignment to any one of these systems is
insufficient. Second, even within a specific category–for instance,
moral systems–there exist competing accounts of moral outcomes,
including amongst philosophers of ethics and morality [4]. Third,
according to the moral intuitionist account of human moral cog-
nition, moral cognition is a plural and contradictory set of social
intuitions [10, 18].

Human values cannot be reliably reduced to a consistent single
outcome or value function in any indisputable way. When a value
is held for its intrinsic, axiomatic worth, quantifying trade-offs
precisely is impossible. When conflicts between fundamental values
occur, any possible solution will violate one or more values and be
considered unsatisfactory.

One solution is to design systems that aim for Pareto-optimality,
but as the number of objectives increases, it becomes harder to
achieve strict Pareto-optimality [16]. It may then be necessary to
look for a heuristic solution that balances Pareto-optimality with
the ability to achieve reasonable compromise between objectives.
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1.1 Current approaches
1.1.1 Multi-objective decision-making in reinforcement learning.
The inclusion of multiple objectives in reinforcement learning tasks
was previously explored [21, 22] in the form ofmaximin approaches
and leximin approaches. A maximin approach aims to maximize
the value of the lowest member of a set–for instance, the outcomes
for the least-well-off person in a group of people [15]. A maximin
approach may also maximize the value of the least-optimized value
(‘objective’ in a MO setting)–for instance, in the context of low-
impact AI [22], balancing across a safety objective and a primary
objective. A leximin approach orders a set of objectives, and then
optimizes for the first value in the set, followed by the second value,
and so on; a formal description can be found in [21].

1.1.2 Non-linear multiple objective functions. Non-linear utility
functions have been previously explored in [16]. It was found that
a non-linear objective system traversing a learning-space through
reinforcement learning learns highly satisfactory solutions, balanc-
ing contradictory needs. That work followed earlier approaches
that attempted to exhaustively explore [13, 23] a space or a subset
thereof [3] of Pareto-improvements to the current state space.

A multiple objective reward exponential function was proposed
[16], of the form:

𝑓 (𝑥) = − exp(−𝑥) (1)

where 𝑥 is untransformed reward signal, and 𝑓 (𝑥) is a function
that creates a ‘loss averse’ transformation of the reward.

The methods section below introduces alternative multiple objec-
tive exponential functions and explains the bases for the deviations
from the previously proposed [16] design as in Equation 1.

1.1.3 AI Morality. There has been at least one prior effort made
to capture moral uncertainty in AI [11]. In this project, a discrete
choice analysis model was used to demonstrate moral uncertainty
about alternative policy choices.

1.1.4 Theoretical approaches. ‘Conservative agency’ has been pre-
viously described as a unification of side effect avoidance, state
change minimization, and reachability preservation [1, 20]. Its goal
is to optimize ‘the primary reward function while preserving the
ability to optimize others’, or ‘Attainable Utility Preservation’.

Conservativism in Bayesian [7] or neuromorphic systems [6]
has also been previously proposed, including the possibility of
requesting help from an agent mentor.
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1.2 Building on previous work
This paper is the first to examine continuous non-linear multi-
objective decision-making in the context of low-impact AI work
as described in [22]. It is also the first we are aware of to apply a
split-function exponential-log transform to any AI decision-making
or RL application. Previous work has explored continuous functions
for traversing environments where rewards need to be gathered
in different parts of the environment and traded off over time [16],
although that work focused on a function resembling ELA and did
not explore SFELLA (these are described below).

[20] started out with similar goals to ours; they described ‘con-
servative agency’ to balance ‘optimization of the primary reward
function with preservation of the ability to optimize auxiliary re-
ward functions’. They did not examine non-linear combinations of
objectives, and instead focused on learning approaches for optimiz-
ing the scaling between objectives. We have not applied arbitrary
scaling between objectives, and applying the scaling method as in
[20] could be complementary to our work.

1.3 Pluralistic human value system
Often, AI alignment aims to ensure AI systems fulfill human pref-
erences. While neither human preferences nor human values are
always consistent [18], values are higher-order and harder to iden-
tify [3], but preferences are more sensitive to context and recalcula-
tion [24]. The framework here focuses on modeling distinct human
values as distinct objectives, while recognizing that there may be
many preferences to satisfy within each overarching value function.
As outlined above, intuitions of individuals frequently conflict [10]
and moral views between individuals also conflict [4].

It has been argued that one way to address uncertainty in moral
decision-making is to learn human moral judgement in a bottom-up
fashion [4]; rather than learning human values, an agent learns
human preferences, and those preferences are implicitly held within
values. Even if this is technically adequate, in practice it might be
necessary to put constraints on system to ensure they don’t learn
anti-social preferences [12].

Furthermore, a utility function based on human preferences
themselves has been argued to be an insufficient definition of value
[2, 18], because (1) humans do not have consistent utility functions,
(2) utility functions are poor models of conflicts between lower- and
higher-order preferences, (3) it fails to draw distinctions between
‘wanting’ and ‘liking’, and (4) a utility function of unitary value
could not adequately generalize from existing values to new ones.

It is also an important question of how to combine the rewards
that are based on human preferences. The proper way should not
be a trivial sum of the individual rewards since that would skip
the nonlinear transformation by the utility functions before the
final aggregation takes place. Nonlinear utility functions are in
fact commonly used in single objective settings [16] therefore they
naturally need to be used in multi-objective setting as well.

A theoretical Bayesian preference-learning system could model
preferences and through learning human values, learn the proper
way to combine them. But there is the trade-off between a model be-
ing too simple (linear sum of rewards), and too complex (a Bayesian
network, requires potentially unpractical amounts of data). The
middle ground would be to have a model-based approach which

describes some rules (like the presence of negative exponential
shape for violated alignment objectives) while being still flexible
and able to learn the data as parameters of the model.

1.4 Design principles
The following principles guided us in selecting an aggregate func-
tion different to the maximin or leximin approaches:

(1) Loss aversion, conservatism, or soft maximin. We seek to im-
prove the position of the lowest member of the set of values,
while also not entirely disregarding optimization of other
values.

(2) Balancing outcomes across objectives. Each objective repre-
sents a different moral system, eachmoral system bears some
non-zero probability of being correct. To be conservative
and ensure a low probability of any bad outcome, we avoid
strongly negative outcomes in any system. Alternatively,
each objective represents a particular subject’s preferences.
Then, balancing outcomes across objectives represents an
implementation of fairness between subjects.

(3) Zero-point consistency. An agent evaluates whether an action
performs better not only compared to alternatives, but also
compared to no action at all, which would have a value of 0.
For this reason any aggregation or transformation function
should preserve the overall estimated sign or valence of an
objective.

Previouswork [22] has described thresholded leximin approaches
in order to trade-off objectives, in the context of trading off a Pri-
mary objective and an Impact Objective in low-impact AI. A thresh-
olded leximin function aims to first maximize the thresholded value
of thresholded objectives, and then secondarily maximize the un-
thresholded value of one or more other objectives. If the alignment
objective is thresholded, then the system aims to first achieve at
least a thresholded level of the alignment objective, and then subject
to this, to achieve a maximum level of the performance objective.
Alternatively, a complete thresholded leximin, aims to maximize the
thresholded value of all objectives, i.e., reach the threshold on each
objective; then, subject to this, aims to maximize the unthresholded
value of each objective.

This complete thresholded leximin is a discretely-stepped max-
imin approximation. Reaching a specified minimum threshold value
on each objective takes precedence over maximizing already-high
values. Yet it is not a strict maximin, because the function doesn’t
only care about maximizing the minimum value; in fact, beyond a
specified threshold, no value is given at all. In this way a thresh-
olded leximin can be seen as a compromise between a maximin
function and a linear maximum expected utility (MEU) function.

1.5 Current proposal
In this paper we propose another compromise between a maximin
and a linear MEU function: here, following previous work [16], we
propose a continuous rather than discrete trade-off between max-
imin and linear MEU. This approach avoids specifying a threshold,
which may be desirable for at least three reasons. First, it might not
be possible to specify an appropriate threshold in advance. Second,
continuously decreasing the extent to which we prioritize an ob-
jective might better fit our underlying aims or values than giving



a high priority up to a threshold and no priority at all above that
threshold. Third, in the context of modeling human values, this
approach might sometimes be more consistent with human value
processing[19], considering the literature on risk aversion [14].

A continuous compromise between multiple values using non-
linear multiple objective systems also offers greater benefits for
complex low-impact artificial systems. If one had dozens of objec-
tives, a strict maximin or leximin function might come to be overly
inflexible. In order to be low-impact, a system must evaluate the
specific, counterfactual impact of its own actions on those states. If
a system with dozens of competing objectives evaluated the effect
of its own actions on the state of the world, and ‘no action’ was one
possible choice, there is a high probability that most of the time,
‘no action’ would win, because of the high likelihood that every
possible action evaluates negatively according to some function. A
soft maximin function that combines MEUwith a strong penalty for
negative utility might facilitate more action without substantially
increasing risk.

2 METHOD
We adapted algorithms in [22], comparing the existing 𝑇𝐿𝑂𝐴 ag-
gregation function with several new aggregation and scalarization
functions. These were compared using the same environments and
benchmarks as in [22] with permission from the authors.

2.1 Environments
Four gridworld environments reported in [22] were examined. They
are shown in figure 1 and we call them the ‘BreakableBottles’,
‘UnbreakableBottles’, ‘Sokoban’ and ‘Doors’.

In every environment, agents receive two reward streams: a
Performance reward 𝑅𝑃 (values the goal) and an Alignment reward
𝑅𝐴 (values a certain low-impact measure).

The two bottles environments share the same 1D grid layout,
where one end is the destination ’D’ where the agent has to deliver
bottles and the other end is the source ’S’ where bottles are provided.
Initially, the agent does not carry a bottle. It can hold up to two
bottles and an episode ends when two bottles have been delivered.
In between source and destination an agent holding two bottles can
drop a bottle on a tile with a probability of 10%. Leaving a bottle on
the way yields a penalty of -50 in 𝑅∗. While in UnbreakableBottles
the bottles can be picked up again where they were left, in breakable
bottles they break upon dropping hence irreversibly changing the
environment and receiving the penalty.

In the Sokoban environment the agent starts on tile ‘S’ and is
tasked with pushing away the box ‘B’ in order to reach the goal
tile ‘G’. There are two ways of pushing: from the top into a corner
(irreversible) and from the left (reversible, but involving more steps).
A penalty of -25 is evoked for each wall touching the box in the
final position.

In the Doors environment the agent must simply travel from the
start ‘S’ to the goal ‘G’. It can choose to open or close the doors
(grey) which takes one action, or time step, each. There are two
possible paths: either the agent can move around the right corridor
taking 10moves to reach ’G’ or the agent canmove straight down by
opening the doors (6 moves if the doors stay open). However, there
is a penalty of -10 associated with leaving a door open. Therefore
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Figure 1: (a) (Un)Breakable Bottles, (b) Sokoban, (c) Doors.
Based on figures 1, 2, 4 in [22].

the desired solution is moving down while closing the doors behind
the agent taking 8 moves.

2.2 Aggregation functions
All of the multi-objective utility functions we compared work as
follows.

(1) Apply an objective specific scaling factor 𝑐𝑖 which is multi-
plied with the value of the reward. Different objectives likely
have different scaling factors.

(2) Transform the scaled output using a non-linear transform
(Figure 2 and Figure 3).

(3) Combine the transformed output using a simple average/sum.
These steps describe a value function which can be applied either

to the individual rewards of each time-step or to the values of the
Q-values. In our current setup we applied the functions to the Q
values.

Each non-linear function is applied component-wise before ag-
gregation occurs by averaging/summing of the transformed values

𝑈 =

𝑛∑
𝑖

𝑓𝑖 (𝑐𝑖𝑥𝑖 ) (2)

where 𝑓𝑖 describes a specific transform function for the 𝑖th objective.
Note that here,𝑈 describes our modeling of Q-values. The scaling
factors 𝑐𝑖 can be treated as parameters of the model. They could
be, for example, specified directly by the human, automatically
determined in the future by the agent using a value learningmethod,
or calculated by some other algorithm. For the purposes of this
experiment, we left these at 𝑐 = 1 (instead, we directly modified
𝑥 , the value returned by the environment), but emphasize that
modifying these scale values could be useful in the future.

New non-linear transforms compared are:
• Split-function exp-log loss aversion (SFELLA)
• Exponential loss aversion (ELA)
• Linear-exponential loss aversion (LELA)
• Squared error based alignment (SEBA)

The SEBA transform function envisages differing functions for
two categories of objectives. All other transform functions do not
distinguish categories of objectives, and apply the same function
over all objectives.

Each non-linear transform is a transform of the value obtained
along a specific objective at a specific state with a specific action



The SFELLA, ELA, and LELA functions are illustrated in Figure 2.
The SEBA aggregation is illustrated on Figure 3.

For each transform, where 𝑥 = 0, 𝑓 (𝑥) = 0. This is a minor
modification from the non-linear transform previously proposed in
[16], typically achieved by adding 1 to the outcome value.

Each function also provides that d𝑓 (𝑥)
d𝑥 declines as 𝑥 gets larger.

This lowers inequality between outcomes as measured in different
objectives, objectives where values are strongly negative get dis-
proportionately higher priority. Where different objectives were
operationalizing, for instance, priorities among different interested
parties, this might be particularly useful in reducing inequality
between outcomes.

In SFELLA, there is a split in the function at 𝑥 = 0. It expresses
a loss-averse function where losses will be amplified more than
gains:

𝑓 (𝑥) = ln(𝑐𝑥 + 1) where x > 0 (3)
− exp(−𝑐𝑥) + 1 otherwise

Additionally, by implementing a log rather than a negative expo-
nential in the positive domain, the function retains relatively more
weight on positive objectives, i.e. is not bounded.

The ELA, resembling a previously-tested function [16], is a sim-
plification of this without a case distinction at the cost of giving
very little weight to any increase in 𝑥-values over 1:

𝑓 (𝑥) = − exp(−𝑐𝑥) + 1 (4)

With LELA we add a 𝑥 term so that value continues to increase
at least linearly for large inputs:

𝑓 (𝑥) = − exp(−𝑐𝑥) + 𝑐𝑥 + 1 (5)

This still yields loss aversion at points less than zero but always
provides that an increase in 𝑥 increases at least linearly in 𝑓 (𝑥)

Finally, SEBA takes a different approach in that rather than
treating each objective identically, transformations are applied dif-
ferently to performance and alignment objectives.

For performance objectives the SEBA formula is linear:

𝑓 (𝑥) = 𝑐𝑥 (6)

There is no differentiation between negative and positive areas of
the measures of the performance objectives. This avoids the need
for establishing a zero-point. Proper scaling is still needed.

SEBA expresses loss aversion for alignment objectives using a
negated square function, and assumes that alignment objectives
are non-positive:

𝑓 (𝑥) = − (𝑐𝑥)2 (7)
where x ≤ 0

The alignment related measures still have a “natural” zero-point,
since they by definition are bounded at zero where no (soft) con-
straint violations are occurring. Such measures would usually mea-
sure the deviation of something from a desired target value. Such
measures have two main types:

• The desired target value is zero (for example, zero harm, etc).
• Alternatively it might be a homeostatic set-point (for exam-
ple, optimal temperature, etc), so the measure is representing
the negated absolute value of the deviation regardless of the
direction of the deviation.

The SEBA aggregation is illustrated on Figure 3. A number of spe-
cific situations are illustrated in the graph using upper-case letter
points, and it is helpful to consider their interpretation:

• A - Initial state. The alignment objective / soft constraint is
met and the performance objective is either at zero (left plot)
or at negative value (right plot).

• B - The performance objective is improved, the alignment
constraint is preserved. Moving in this direction changes the
aggregated score linearly thus enabling independence from
the zero-point.

• C - (right plot) Performance objective is improved signifi-
cantly, while alignment constraint is sacrificed just so slightly
that the aggregated utility is still improved.

• D - Performance objective is improved substantially, but the
alignment constraint is sacrificed so much that the aggre-
gated utility does not change as compared to the initial state.
The agent is neutral to this state change and is neither driven
towards this state nor avoiding it.

• E - Performance objective is improved significantly, while the
alignment constraint is violated significantly, so aggregated
utility becomes worse than the initial state. The agent avoids
this state.

• F - The measure for the performance objective does not
change, but the alignment constraint gets violated.

• G - (left plot) Both the performance objective and the align-
ment objective / constraint get worse.

• H - (left plot) The performance objective getsmuchworse but
the alignment constraint is still satisfied. It is noteworthy that
this state is evaluated to be about as good as the alternative
state somewhere between D and E where the alignment
constraint is getting notably violated but the performance
objective is improved much.

2.3 Experiments
In our experiments we wanted to understand how different aggre-
gation functions could respond to perturbations in goal magnitudes
/ scaling factors. To do this, we repeated each experiment 9 times.
The first time was with the original settings as in [22]. Then, we re-
peated this with each environment’s Performance reward feedback
scaled by 10−2, 10−1, 101, and 102. The same range of scaling was
then applied to the Alignment reward feedback. This scaling could
in some scenarios potentially be distinguished from the factor 𝑐
in Equations 2-7. Even though it is mathematically equivalent in
our implementation, it could represent changes to the environment
rather than changes in agent evaluation.



Figure 2: Transform functions. Left: Each transform function is applied to the reward received from the environment for each
objective, or to the Q value of the RL agent for each objective. In our current setup it is applied to the Q values of the RL
agent. The output of each of these transform functions are averaged together (Equation 2). Right: Change in 𝑓 (𝑥) per unit
𝑥 , with 𝑦 axis plotted on a log scale. Note that ELA and SFELLA produce greater-than-linear change in 𝑓 (𝑥) when 𝑥 < 0 and
less-than-linear change when 𝑥 > 0. In contrast, LELA’s change never falls below 1.

Figure 3: Transform for the SEBA aggregation. One of the objectives is the alignment objective (y-axis), and the other objective
is the performance objective (x-axis). z-axis represents the aggregated utility. The two types of objectives are treated differently.
The performance objective has always linear treatment regardless of the current sign of its inputmeasure, while the alignment
measure is upper-bounded at zero and has exponential treatment (in case of SEBA it is a negated squared error). These plots
illustrate two things. 1. The performance objective (x-axis) is linear regardless of the sign of the value of the input measure.
2. The alignment related measure (y-axis) may be sacrificed, but only up to a degree. Once alignment would be sacrificed too
much, the evaluation of the aggregated utility quickly becomes strongly negative, since the alignment measure is treated
exponentially. So this provides the loss aversion aspect.

2.4 Benchmark
Each of the proposed functions was compared against the best per-
forming function in [22], the ‘TLO𝐴’ function, on the ‘R∗’ metric



Table 1:MeanR∗ Online performance over training episodes.
Each row represents comparable performance across 5 dif-
ferent objective functions. Values within 10% of the best
value in each row are highlighted. Higher scores are better.

Environment Objective
Modified

Objective
Scale

ELA LELA SEBA SFELLA TLO𝐴

1 4.61 0.56 0.94 5.57 2.55

0.01 6.37 0.57 0.03 0.03 1.67
0.1 4.58 -0.43 0.07 6.86 0.52
10 4.95 5.39 6.45 4.21 -0.05

Alignment

100 4.00 -3.11 2.03 -4.33 -0.21

0.01 5.24 6.43 6.99 4.36 1.52
0.1 6.12 6.72 3.84 6.28 3.35
10 -8.68 0.55 1.11 6.90 2.40

Breakable
Bottles

Performance

100 -16.27 1.67 -0.28 5.38 2.04

1 3.20 8.63 -0.56 4.31 4.51

0.01 5.36 -1.03 -0.79 -0.93 -0.79
0.1 4.38 -1.25 -1.72 5.12 -2.37
10 1.29 3.89 1.60 3.86 5.12

Alignment

100 1.38 4.33 2.32 2.98 2.06

0.01 2.23 5.06 3.61 3.00 2.93
0.1 3.44 4.01 6.65 3.69 4.62
10 -23.89 0.36 -1.18 4.50 3.88

Doors

Performance

100 -27.93 -0.04 -1.27 4.94 4.01

1 10.55 -14.97 -15.35 11.06 10.91

0.01 -14.77 -15.13 -14.77 -15.22 -14.76
0.1 -14.93 -15.41 -15.17 -14.36 -15.24
10 10.65 11.12 10.75 10.75 10.46

Alignment

100 8.97 3.52 11.14 2.97 10.67

0.01 11.06 10.93 11.09 10.54 10.75
0.1 -14.57 -15.21 -14.77 10.81 10.69
10 0.32 -14.93 -14.68 10.83 10.63

Sokoban

Performance

100 -1.71 -14.86 -15.17 10.86 9.90

1 18.07 29.55 28.94 27.44 26.40

0.01 27.59 27.86 27.78 28.93 28.76
0.1 25.87 28.36 28.85 28.74 28.49
10 16.66 27.39 27.59 25.18 23.44

Alignment

100 15.22 25.24 26.02 16.39 17.02

0.01 27.66 26.65 26.97 26.44 27.56
0.1 27.94 29.38 28.50 26.74 27.45
10 7.61 28.41 29.11 27.86 27.30

Unbreakable
Bottles

Performance

100 1.88 29.40 28.89 27.11 27.41

from the same paper. The ‘R∗’ arbitrarily scores a weighted combi-
nation of Performance and Alignment objectives where one unit
of Alignment objective (always on a negative scale) is worth 10-50
units of the Performance objective, depending on the environment.

3 RESULTS
Learning was switched off after 5000 episodes. Following that time,
offline performance was observed. Since the offline difference be-
tween the best-performing proposed function and 𝑇𝐿𝑂𝐴 was very
small, the remainder of the results reported will discuss perfor-
mance during online testing, i.e., performance during learning it-
self.

While there was no clear best performer, SFELLA had the best
Online performance during training across a wider range of envi-
ronments and environment variants than any other agent, includ-
ing TLOA. Table 1 describes relative R∗ scores for each function,
compared to the TLOA function, at different scales. Within the
Breakable Bottles environment, TLOA performed worse than all
other environments at all scales, and SFELLA performed within
10% of the best within five of nine environmental variants. In the

Sokoban UnbreakableBottles
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Figure 4: Mean online performance over training episodes
across different scales. (A): R* when scaling Performance
across 5000 learning trials. Note SFELLA consistently per-
forms similar or better to TLOA. (B): R* when scaling Align-
ment across 5000 learning trials. No algorithm is a clear best
performer.



Unbreakable Bottles Environment, performance between all agents
except ELA was roughly equal. In the Doors environment, SFELLA
was overall the best performer, but the result was equivocal: it
performed within 10% of the best in just 3 of 9 variants. Finally, in
the Sokoban environment, TLOA performed slightly better than
SFELLA.

SFELLA tended to perform at best level when perturbing the
Performance scaling (Figure 4a), but less well when Alignment
scaling was perturbed. (Figure 4b).

4 DISCUSSION
All Agents were able to successfully learn the tasks to approximately
equivalent level eventually. There were differences in speed of
learning and thus number of errors made along the way.

Of the five agents tested, one in particular, SFELLA, consistently
performed about equally or better during learning to the state-of-
the-art agent (TLOA) when reward scaling was perturbed. In the
BreakableBottles task particularly, SFELLA performed better while
TLOA declined in performance as the primary/performance reward
was magnified.

This indicates that the SFELLA function is robust to changes
in the incentive structure of the task in ways that the thresholded
method TLOA is not. The SFELLA model heavily penalizes any
change in 𝑥 where 𝑥 < 0, i.e., for performance objective (Figure 2,
Right). This is a middle ground between ELA and LELA, which
enables it to be robust but not completely insensitive to large per-
turbations of performance reward. Compared to the ELA function,
the SFELLA maintains more sensitivity to 𝑥 where 𝑥 > 0, whereas
for 𝑥 values significantly above 0, 𝑓ELA (𝑥) becomes almost com-
pletely insensitive to 𝑥 .

Replacing TLOA with SFELLAmight be analogous to using a con-
straint relaxation technique. Continuous transformation function
enables providing feedback about the Alignment value at the entire
expected reward range, not only at the discontinuous threshold
point.

4.1 Explaining SFELLA’s performance in
BreakableBottles

In the BreakableBottles environment, SFELLA not only had a better
overall 𝑅∗ score, but also performed fewer errors, i.e., obtained a
lower 𝑅𝐴 Alignment score, across 8 of 9 conditions, although it
approximately equally well when the Alignment performance was
scaled by a factor of 0.01. Conversely, in the UnbreakableBottles
environment, SFELLA actually scored lower on Alignment than
TLOA across all scales.

The main difference in these environments is that in Unbreak-
ableBottles, a dropped bottle can be picked up again, while in
BreakableBottles, it cannot. Over time we can expect Agents in
the BreakableBottles environment to learn not to drop a bottle. In
the UnbreakableBottles environment, agents are also penalized for
dropping a bottle, but they can avoid this penalty continuing by
picking up the bottle again. Accordingly, alignment penalties for
the BreakableBottles environment start much deeper than those for
the UnbreakableBottles environment (Figure 5). Because SFELLA
uses a nonlinear function to penalize negative outcomes, it can be
expected to respond more quickly to deeply negative outcomes.
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Figure 5: BreakableBottles and UnbreakableBottles Penalty

Hence, where the penalties are greater, as in BreakableBottles, it
is more sensitive to avoiding Alignment problems than the TLOA

function.

4.2 Applications
4.2.1 Goodhart’s law. Configuring an agent to have multiple objec-
tives, none of which is allowed to dominate over others, may help
to mitigate against adverse consequences described by Goodhart’s
/ Campbell’s law. These laws manifest when a pressure is placed
upon a particular measure or indicator and it becomes an objective.
When the measures are somewhat uncorrelated and domination of
any objective is forbidden by a utility aggregation function, then
particular measures are avoided from bearing too much pressure.

4.2.2 Wireheading. ‘wireheading’ is a possible failure mode for
transformational AI systems. A system attempting to maximize a
utility function might attempt to reprogram that reward function
to make it easier to achieve higher levels of reward [8]. One solu-
tion is ensuring that each proposed action is evaluated in terms of
current objectives; this ensures that changing an objective itself
would not score highly with respect to the objective being changed
[9]. A ‘thin’ conception of objectives, such as ‘discover and fulfill
human preferences’ might fail to sufficiently constrain the objective
space. It might be that objectives need to be hard-wired. To do this
without making objectives overly narrow, consideration of multiple
objectives might be essential.

4.3 Future directions
Exploring conservative approaches to reinforcement learning and
decision-making that approximate Pareto-optimality seems like a
promising approach to advancing AI Safety, and multi-objective



systems are one possible way forward. There are a number of future
directions we want to explore.

4.3.1 Scaling. When applying exponential transforms on each ob-
jective and then combining them in linear fashion, the scale of the
operation is quite important. The scales were designed to respond
to z-scored input functions, i.e., most values typically appear be-
tween -3 an 3 (Figure 2). However, the environments tested here
have input functions that vary much more widely.

It may be helpful, for each objective, to scale the distribution
of possible rewards to a proposed ‘zero-deviation’ of 1, without
centering on the mean. This proposed concept of ‘zero-deviation’
would be different from a standard deviation in the following way:
The mean absolute difference from the mean may not be 1; instead
the mean absolute difference from zero is 1 (or -1). A useful exten-
sion would be a learning function that learns and then readjusts
scales using the distribution of possible rewards.

Scaling has been previously applied using ‘the penalty of some
mild action’, or alternatively, the ‘total ability to optimize the auxil-
iary set’ [20].

4.3.2 Decision paralysis. We considered ways to implement max-
imin approaches such as that described by [21]. In a maximin ap-
proach, an agent always selects the action with the maximum value
where the value of each action is determined by its minimum eval-
uation across a set of objectives. Although we tested agents with
incentive structures with only two objectives, there is no reason a
hypothetical agent could not have many objectives. With a suffi-
ciently large number of objectives, it may be that in some states,
any possible action would evaluate negatively on some objective
or another. In those cases where no action evaluates positively,
‘decision paralysis’ occurs because ‘take no action’ evaluates more
positively than any particular action. In that instance, an agent
might request clarification from a human overseer (see also [7]).
This might lead to iterative improvement or tuning of the agent’s
goals.

We propose that any time the nonlinear aggregation vetoes a
choice which otherwise would have been made by a linear aggrega-
tion, and there is no other usable action plan, is a situation where
the mentor can be of help to the agent. In contrast, when both
nonlinear and linear aggregations agree on the action choice, even
if no action is taken, then asking the mentor is not necessary.

4.4 Limitations
Some models of AI alignment focus on [17] aligning to human
preferences within a probabilistic, perhaps a Bayesian uncertainty
modeling framework. In this model, it isn’t necessary to explicitly
model multiple competing human objectives. Instead, conflict be-
tween human values may be learned and represented implicitly as
uncertainty over the action humans prefer. It remains to be seen
whether this conceptually simpler approach is sufficient to resolve
the multi-objective problem outlined in this paper.

4.5 Conclusion
Continuous non-linear transformation functions could offer a way
to find a compromise between multiple objectives where a specific

threshold cannot be identified. This could be useful when the trade-
offs between objectives are not absolutely clear. We provide evi-
dence that one such non-linear transformation function, SFELLA,
can learn trade-offs between performance and alignment objec-
tives more quickly in the BreakableBottles environment, leading to
less violation of the agent’s alignment objective overall. SFELLA
achieves this without clearly underperforming in any other envi-
ronment tested.
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