
A primal heuristic to compute an upper bound set for
multi-objective 0-1 linear optimisation problems

Xavier Gandibleux

Université de Nantes

Xavier.Gandibleux@univ-nantes.fr

Guillaume Gasnier

Université de Nantes

Guillaume.Gasnier@etu.univ-

nantes.fr

Saïd Hanafi

Université Polytechnique - INSA

Hauts-de-France

Said.Hanafi@uphf.fr

ABSTRACT

This paper presents an algorithm aiming to compute an upper

bound set for a multi-objective linear optimisation problem with

binary variables (𝑝-01LP). Inspired by the well known « Feasibility

Pump » algorithm in single objective optimisation, it belongs to the

class of primal heuristics. The proposed algorithm, named « Gravity

Machine », aims to deal with generic 𝑝-01LP. In that sense, it does

not exploit any information coming from the combinatorial struc-

ture of the problem. Sober in memory and computational resources,

and given a time limit, the algorithm explores a 𝑝-01LP problem

in order to discover a tight upper bound set, without guarantee of

returning such a set. The paper describes the current version of

the proposed algorithm. It reports numerical results obtained on

instances of set partitioning problem available on the OR-library,

extended to two objectives.

KEYWORDS

Multi-Objective Optimisation, 01 Linear Programming, Bound Sets,

Primal Heuristic.

1 INTRODUCTION

1.1 Definitions and Notations

The multi-objective 0-1 linear optimisation problems with 𝑝 ob-

jectives (𝑝-01LP) considered in this paper can be formulated as

follows:

min 𝑧 (𝑥) = 𝐶𝑥

subject to 𝐴𝑥 ≦ 𝑏

𝑥 ∈ {0, 1}𝑛

where

• 𝑥 ∈ {0, 1}𝑛 , the vector of 𝑛 binary variables 𝑥 𝑗 , 𝑗 = 1, . . . , 𝑛;

• 𝐴 ∈ R𝑚×𝑛 , the 𝑚 constraints 𝐴𝑖𝑥 ≤ 𝑏𝑖 , 𝑖 = 1, . . . ,𝑚 and

𝑏 ∈ R𝑚 ;

• 𝐶 ∈ R𝑝×𝑛 , the objective matrix where 𝑝 ≥ 2;

• 𝑋 B {𝑥 ∈ {0, 1}𝑛 | 𝐴𝑥 ≦ 𝑏} ⊆ R𝑛 , the set of feasible

solutions, with R𝑛 the decision space;

• 𝑌 B {𝐶𝑥 | 𝑥 ∈ 𝑋 } ⊆ R𝑝 , the outcome set, with R𝑝 the

objective space.

1.2 Solutions and performance vectors

We assume that no feasible solutionminimizes all 𝑝 objectives simul-

taneously and use the following notation for componentwise orders

in R𝑝 . Let 𝑦,𝑦′ ∈ R𝑝 , we denote 𝑦 ≦ 𝑦′ (𝑦 weakly dominates 𝑦′)
if 𝑦𝑘 ≦ 𝑦′

𝑘
for 𝑘 = 1, . . . , 𝑝 , 𝑦 ≤ 𝑦′ (𝑦 dominates 𝑦′) if 𝑦 ≦ 𝑦′ and

Proc. of the 1st Multi-Objective Decision Making Workshop (MODeM 2021), Hayes, Man-
nion, Vamplew (eds.), July 14-16, 2021, Online, http://modem2021.cs.nuigalway.ie. 2021.

𝑦 ≠ 𝑦′, and 𝑦 < 𝑦′ (𝑦 strictly dominates 𝑦′) if 𝑦𝑘 < 𝑦′
𝑘
, 𝑘 = 1, . . . , 𝑝 .

We define R
𝑝

≧ := {𝑦 ∈ R𝑝 : 𝑦 ≧ 0} and analogously R
𝑝
≥ and R

𝑝
> .

Let 𝑧 (𝑥) = (𝑧1 (𝑥), . . . , 𝑧𝑝 (𝑥)) ∈ R𝑝 be the objective vector, also

named point or performance, associated with a solution 𝑥 ∈ R𝑛 . A
feasible solution 𝑥 ∈ 𝑋 is called efficient (weakly efficient) if there
does not exist 𝑥 ∈ 𝑋 such that 𝑧 (𝑥) ≤ 𝑧 (𝑥) (𝑧 (𝑥) < 𝑧 (𝑥)). If 𝑥 is

(weakly) efficient, then 𝑧 (𝑥) is called (weakly) nondominated. The
efficient set 𝑋𝐸 ⊆ 𝑋 is defined as 𝑋𝐸 B {𝑥 ∈ 𝑋 : � 𝑥 ′ ∈ 𝑋 : 𝑧 (𝑥 ′) ≤
𝑧 (𝑥)}, and its image under the vector-valued linear mapping 𝐶

is referred to as the nondominated set 𝑌𝑁 B {𝑧 (𝑥) | 𝑥 ∈ 𝑋𝐸 }.
Equivalently, 𝑌𝑁 can be defined by 𝑌𝑁 B {𝑦 ∈ 𝑌 : (𝑦 − R𝑝≧) ∩ 𝑌 =

{𝑦}}, (See [3] for further details.).

1.3 Bound sets

Branch and bound is a well-known generic method for comput-

ing an optimal solution of a single objective optimization problem.

Based on the “divide to conquer” idea, it consists in an implicit enu-

meration principle, viewed as a tree search. Branch and bound has

been extended to deal with multi-objective optimisation problems,

see [23] for a recent state-of-the-art. Nevertheless, the contribu-

tions on the extensions of the components of branch and bound

for multi-objective optimization are recent. For example, the con-

cept of bound sets, which extends the classic notion of bounds, has

been mentioned by Villarreal and Karwan in 1981. But it was only

developed for the first time in 2001 by Ehrgott and Gandibleux [5],

and fully defined in 2007 [7].

For a minimisation problem, we denote by

• 𝑈 , an upper bound set (also named primal bound set) on 𝑌𝑁 ,

• 𝐿, a lower bound set (also named dual bound set) on 𝑌𝑁 .

For a sake of simplicity, only the definition presented in 2001 for

𝑈 on 𝑌𝑁 is presented here (the reader will find the required termi-

nology, the refined definitions and properties about bound sets in

[7]). In this definition, lower and upper bound sets are proposed to

bound a subset 𝑌 ′ ⊂ 𝑌 of feasible points.

Definition 1 (A lower bound set according to [5]). A lower
bound set for 𝑌 ′ is a subset 𝐿 ⊆ R𝑝 such that

(i) For each 𝑦 ∈ 𝑌 ′ there is some 𝑙 ∈ 𝐿 such that 𝑙 ≦ 𝑦,
(ii) There is no pair 𝑦 ∈ 𝑌 ′, 𝑙 ∈ 𝐿 such that 𝑦 dominates 𝑙 .

Definition 2 (An upper bound sets according to [5]). An
upper bound set for 𝑌 ′ is a subset𝑈 ⊂ R𝑝 such that
(iii) For each 𝑦 ∈ 𝑌 ′ there is some 𝑢 ∈ 𝑈 such that 𝑦 ≦ 𝑢,
(iv) There is no pair 𝑦 ∈ 𝑌 ′, 𝑢 ∈ 𝑈 such that 𝑢 dominates 𝑦.

The rest of this paper is devoted to a generic primal heuristic

aiming to generate a set of feasible solutions 𝑋𝑈 ⊆ 𝑋 such that the

http://modem2021.cs.nuigalway.ie

image 𝑧 (𝑋𝑈) = {𝑧 (𝑥) : 𝑥 ∈ 𝑋𝑈 } is an upper bound set. In other

words, we look for an upper bound set 𝑈 such that 𝑧−1 (𝑈) = {𝑥 ∈
𝑋 : 𝑧 (𝑥) ∈ 𝑈 } = 𝑋𝑈 or equivalently 𝑧 (𝑋𝑈) = 𝑈 .

1.4 State of the art

A vast number of multi-objective metaheuristics (MOMH) have

been proposed (see i.e [6, 8, 16]) since the mid-90s to approximate

𝑌𝑁 by constructing a subset of an approximate set𝑋 ∗ of the efficient

set 𝑋𝐸 such the image 𝑧 (𝑋 ∗) is an upper bound set. They represent

a first group of algorithms and are mainly experimented on multi-

objective non-linear problems or on multi-objective combinatorial

problems, where for these latter the specific structure of the problem

is strongly exploited by the algorithms. Nevertheless, relatively

few MOMH [18] have been tested on general multi-objective 0-1

linear optimisation problems where by assumption none structure

is available to be exploited by the algorithm.

A second group of algorithms is constitued by general primal

heuristics, mainly represented by « Feasibility Pump » (FP), a heuris-

tic introduced in 2005 [9] for computing feasible solutions of single-

objective integer linear programs. FP may be outlined as follows

(see Figure 1). Starting from an optimal solution of the LP-relaxation

𝑥0 ∈ 𝑋 , where 𝑋 = {𝑥 ∈ [0, 1]𝑛 : 𝐴𝑥 ≦ 𝑏}, the FP heuristic gener-

ates iteratively two sequences of solutions 𝑥𝑡 ∈ 𝑋 and 𝑥𝑡 ∈ {0, 1}𝑛 .
A binary solution 𝑥𝑡 , 𝑡 ≥ 0, is obtained from the fractional 𝑥𝑡 by

a rounding procedure (e.g. scalar rounding to the nearest integer),

while a fractional solution 𝑥𝑡 , 𝑡 > 0, is an optimal solution of the

projection problem (see projectSolution in Section 2.2). Thus, a

new fractional solution 𝑥𝑡+1 is generated as the closest feasible LP

solution with respect to the solution 𝑥𝑡 . After some iterations the

FP heuristic may start to cycle, i.e., a particular sequence of points

𝑥𝑡 and 𝑥𝑡
′
, 𝑡 ′ > 𝑡 , is visited repetitively. That issue is resolved ap-

plying a perturbation to the current solution 𝑥𝑡
′
as soon as a cycle

is detected (see perturbSolution in Section 2.2). The processus

is repeated until a feasible solution is discovered or a maximum

number of iterations or time limit is reached. Today FP is integrated

in several MIP solvers such as GLPK, Gurobi, and CPLEX.

In multi-objective linear programming, to the best of our knowl-

edge, only two recent papers [21, 22] belong to this second group.

In [21], a matheuristic algorithm to approximate the non dominated

frontier of bi-objective binary linear programs is proposed. The

authors combine several exact/heuristic algorithms from both sin-

gle and bi-objective linear programs with integer or continuous

variables from the literature (the Chalmet method, the feasibility

pump heuristic, a local search, and the Aneja and Nair method). The

feasibility pump is designed for finding feasible solutions by using

the weighted sum method. The local search is used for improving

the solutions obtained by the feasibility pump heuristic, and the

Chalmet method is used for finding solutions from different parts

of the objective space. This matheuristic is extended in [22] for

multi-objective mixed integer linear programs.

The algorithm we propose in this paper belongs to this second

group. It aims to reuse the principles based on linear programming

techniques structuring FP, in considering the multi-objective nature

of the optimisation problem to solve (the single optimal solution

is replaced by a set of efficient solutions). The components of the

algorithm have been specified in order to have a low computational

Figure 1: Illustration of the feasibility pump principle. 𝑡 ≥ 0

is an iteration, 𝑥𝑡 is a fractional solution, 𝑥𝑡 is an integer

solution, 𝑥0
is an initial solution (e.g. here, 𝑥0 B arg min{𝑐𝑇 𝑥 :

𝑥 ∈ 𝑋 } i.e. a minimum-cost solution of the LP relaxation),

𝑥𝑡
∗
is a feasible integer solution detected (when it exists) at

iteration 𝑡∗

complexity and for being scalable to more than two objectives.

Due to the differences with FP, and to avoid any confusion with

this latter, the proposed algorithm gets a specific name, which is

« Gravity Machine » (for the association with the idea of flatting

the image of feasible solutions identified along 𝑌𝑁). For more detail

see the report [11].

2 THE ALGORITHM

The ultimate goal targeted in our work is to tighten 𝐿 and 𝑈 over

𝑌𝑁 in order to prune as early as possible useless nodes in a branch-

and-bound algorithm. The proposed algorithm is devoted to the

upper bound set 𝑈 . The desirable characteristic is to get a such 𝑈

well representative of 𝑌𝑁 , and not necessary a close approximation

of all 𝑦 ∈ 𝑌𝑁 , which is a difference with [21, 22]. This section

develops a canonical version of the algorithm which is numerically

evaluated in section 3. Several potential variants and extensions are

mentioned and will be investigated in the forthcoming versions.

2.1 Principle and components

The main principle adopted is, starting from a lower bound set 𝐿,

to flatten the image of feasible solutions found on 𝐿, in order to

collect a sample of points approximating𝑌𝑁 . The main components

structuring the algorithm are the following.

A lower bound set 𝐿. In this version, 𝐿 is obtained by sam-

pling with an 𝜖-constraint method the polytope of the linear

relaxation of the multi-objective optimisation problem. The

two objectives (i.e. 𝑝 = 2) are solved separately, aiming to

deduce the range of values [𝑧𝑘
𝑚𝑖𝑛

, 𝑧𝑘𝑚𝑎𝑥], 𝑘 = 1, 2 on both

objectives and thus the steps 𝜖1 and 𝜖2 for a given number of

samples (parameter 𝑛𝐿). The image of solutions (symbol ‘+’

on Figure 2) delimits the search area in the objective space.

A set of generators in the decision space. We call genera-
tor a starting LP-feasible solution (a priori unfeasible, i.e. not

integer) used by the algorithm for trying to find a feasible so-

lution. In this version, we consider as generators all solutions

𝑥𝑘 , 𝑘 = 1, . . . , 𝑛𝐿 such that their images𝑦𝑘 := 𝑧 (𝑥𝑘) form the

lower bound set 𝐿 (ps: by abuse of language, 𝑦𝑘 may some-

times also be designated by “generator”, as shortcut for “the

image of a generator” when no misunderstanding appears).

Intuitively, a generator is valuable for the search of a feasible

solution if its image in objective space is closer to 𝑌𝑁 . From

a generator, the operations performed sequentially alternate

rounding of a non-integer solution and projection of a solu-

tion on the polytope of the relaxed problem until detecting (i)

a feasible solution or (ii) a cycling situation or (iii) a stopping

condition (time limit or iteration limit given respectively

by the parameters maxTime and maxTrial). Thereby a path

composed of solution images takes shape from a generator

(depicted on Figure 2 by 𝑦𝑘,0 −𝑦𝑘,0 −𝑦𝑘,1 −𝑦𝑘,𝑡∗ where 𝑡∗ is
the final iteration along the path when a feasible solution is

found -i.e. stopping condition (i) fulfilled-) and will be guided

to 𝑌𝑁 by two cones defined hereafter.

A cone open to the search area in objective space. A cone

is pointed on a generator 𝑦𝑘 , and is defined on base of the

two adjacent images of generators𝑦𝑘−1
and𝑦𝑘+1 for the gen-

erator 𝑦𝑘 (see Figure 2). The rays]𝑦𝑘−1, 𝑦𝑘] and [𝑦𝑘 , 𝑦𝑘+1 [
define two hard constraints (blue plain lines on Figure 2) to

respect by the rounded solutions (depicted by 𝑦𝑘,0 and 𝑦𝑘,𝑡
∗

and respectively symbols ■ and •) issued for this generator.

Two dummy points 𝑦0
and 𝑦𝑛𝐿+1

are pushed in 𝐿 for the

needs of the cones pointed on the two extreme points 𝑦1

and 𝑦𝑛𝐿
.

A cone open to the lower bound set in objective space. A

cone is pointed on a projected point (depicted by point 𝑦𝑘,1

and the symbol × on Figure 2), and is defined on base of the

two adjacent images of generators (𝑦𝑘−1
and𝑦𝑘+1 for the gen-

erator 𝑦𝑘 for which this projected point is derived). The rays

]𝑦𝑘−1, 𝑦𝑘 (1)] and [𝑦𝑘 (1), 𝑦𝑘+1 [define two soft constraints

(dashed lines on Figure 2) to be satisfied if possible by the

rounded solutions (depicted by 𝑦𝑘,1 and 𝑦𝑘,𝑡
∗
respectively

symbols ■ and •).

These components are assembled within Algorithm 1 which

outline « Gravity Machine ». With a simple design, an immediate

analogy can be made with the first version of feasibility pump in

terms of degree of sophistication. As expected, these components

may be instantiated on problems with more than two objectives,

knowing however that the question of scalability is never trivial in

general in multi-objective optimisation.

2.2 Outline of the algorithm

This section outlines of the algorithm, with their parameters and

their main variables. Main functions are enumerated with a short

comment.

Parameters:

• D: an instance of 2 − 01𝐿𝑃 to solve

Figure 2: For a bi-objective minimisation problem, illustra-

tion of the two cones allowing to guide the search in the ob-

jective space from the generator 𝑦𝑘 . The points 𝑦𝑘,0 to 𝑦𝑘,𝑡
∗

correspond respectively to the image of a generator solu-

tion (symbol ‘+’), a rounded solution (symbol ‘■’), a projected
solution (symbol ‘×’), and a rounded and feasible solution

(symbol ‘•’). From 𝑦𝑘 , the ordered list of points 𝑦𝑘,0 − 𝑦𝑘,0 −
𝑦𝑘,1 − 𝑦𝑘,𝑡∗ represents the path of visited solutions.

• 𝑛𝐿 : the number of generators to compute

• maxTrial: the maximum trial to do per generator

• maxTime: the time limit allowed at each generator

Variables:

• 𝑥 : a solution where 𝑥𝑖 ∈ [0, 1], 𝑖 = 1, 𝑛

• 𝑥 : a solution where 𝑥𝑖 ∈ {0, 1}, 𝑖 = 1, 𝑛

• 𝐹 ⊆ 𝑋 : a set of feasible solutions

• 𝐻 : a set historicizing the rounded solutions visited

• 𝑘 : the 𝑘-th generator

• trial: number of attempts done on the 𝑘-th generator

• feasible: boolean set to true when a solution is feasible

• cycle: boolean set to true when a solution is revisited

computeGenerators The generators are computed by ap-

plying a double series of 𝜖-constraint resolutions, one series

per objective, with a step set up by the parameter 𝑛𝐿 . Fig-

ure 3 shows a typical output returned with this generation

procedure. Several others generation procedure could be also

produce an upper bound set 𝐿 such as applying the Aneja

and Nair method with a well diversified set of weights or

also in applying a parametric resolution method.

roundingSolution This rounding function transforms a

fractional solution 𝑦𝑘,𝑡 into one binary solution 𝑦𝑘,𝑡 . This

transformation is guided by the two cones defined on the

objective space. The cone pointed on𝑦𝑘,0 avoids switching to

zero undesirable variables 𝑥 𝑗 such that the resulting solution

𝑥 is necessarily unfeasible. The cone pointed on 𝑦𝑘,𝑡 , 𝑡 > 0,

locates if possible the image of the resulting solution 𝑥 in

the neightborhood of 𝑦𝑘,0. This action aims to generate a

well distributed upper bound set𝑈 along 𝑌𝑁 . In the results

Data: D, 𝑛𝐿 , maxTrial, maxTime

Result: 𝐿,𝑈

𝐿, 𝐹← computeGenerators(D, 𝑛𝐿);

𝐻 ← ∅ ;
forall 𝑧 (𝑥𝑘) ∈ 𝐿, 𝑥𝑘 ∉ 𝐹 do // each 𝑘-th unfeasible gen.

timeStart← time(); trial← 0;

timeout← false; feasible← false;

𝑥 , 𝐻 , cycle← roundingSolution(𝑥𝑘 , 𝑘, 𝐻);

while ¬𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 && ¬𝑡𝑖𝑚𝑒𝑜𝑢𝑡 do

trial← trial + 1 ;

𝑥 , 𝐹 , feasible← projectSolution(𝑥);

if ¬𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 then
𝑥 , 𝐻 , cycle← roundingSolution(𝑥, 𝑘, 𝐻);

if cycle then
𝑥 ← perturbSolution(𝑥);

end

end

timeout← (time()-timeStart ≥ maxTime) || (trial =

maxTrial)

end

end

𝑈 ← extractNondominatedPoints(𝐹);

Algorithm 1: Outline of « Gravity Machine »

reported in this paper, each fractional variable to set to 0

or 1 is considered alone. One variant experimented with

success considers the fractional variables 2 per 2. This vari-

ant enlarges slightly the neighborhood and thus enables the

algorithm to visit advantageously more configurations.

One alternative is to replace the cone pointed on 𝑦𝑘,𝑡 , 𝑡 > 0,

by a projection guided by 𝑦𝑘,0. This variant has been experi-

mented but it is not reported in this paper.

projectSolution. Similar to the projection phase of feasi-

bility pump, this function find through linear programming

the point 𝑥 ∈ 𝑋 which is as close as possible to the current

binary solution 𝑥 . If

Δ(𝑥, 𝑥) =
𝑛∑
𝑗=1

| 𝑥 𝑗 − 𝑥 𝑗 |= 0

then 𝑥 = 𝑥 is a 01 feasible solution, and we are done. As

proposed in [9], this step is achieved in solving the following

linear programing problem (given here coded in julia and

using JuMP, an algebraic modeling language):

function delta(A,xInt)

nbctr = size(A,1); nbvar = size(A,2)
xInt0, xInt1 = split(xInt)

m = Model(GLPK.Optimizer)
@variable(m, 0.0 <= x[1:length(xInt)] <= 1.0)
@objective(m, Min, sum(x[i] for i in xInt0)

+ sum((1-x[i]) for i in xInt1))
@constraint(m, [i=1:nbctr],

(sum((A[i,j]*x[j]) for j in 1:nbvar)) == 1)

optimize!(m)
return objective_value(m), value.(x)

end

JuMP model 1: the projection model

In this model, A is the matrix of coefficients for the con-

straints, xInt corresponds to 𝑥 , split is a function iden-

tifying the values 0 and 1 into 𝑥 , @objective defines the

objective function to minimise, @constraint defines the

systems 𝐴𝑥 = 1, optimize! invokes the MIP solver (here

GLPK) on the model m stated, and the function returns the

optimal values of 𝑥 B arg min{Δ(𝑥, 𝑥), 𝑥 ∈ 𝑋 }.

perturbSolution. For a given iteration of the algorithm, 𝑥

is the current rounded solution and 𝐻 records the previous

rounded solution obtained. When 𝑥 ∈ 𝐻 , the two successive

rounded solutions are identical which generates a 1-cycle.

In that case a perturbation is applied.

The perturbation principle follows the principle introduced

in the first version of feasibility pump. The differences con-

cern the two cones. The value

nbVar← random[
𝑇
2
,

3𝑇
4
] with 𝑇 = 30

is computed and the nbVar first variables of 𝑥𝑖 closest to 0.5

are considered as follows; if 𝑥𝑖 = 0 (resp. 𝑥𝑖 = 1) then flip

𝑥𝑖 = 1 (resp. 𝑥𝑖 = 0) if and only if the image of the solution

belongs to the two cones.

extractNondominatedPoints At the end, the algorithm

has generated at most 𝑛𝐿 feasible solutions (and in the worst

case, none feasible solution) gathered in the set 𝐹 . This last

step identifies the non-dominated points in 𝐹 giving the

upper bound set 𝑈 . This is achieved in applying the Kung

algorithm [17] on 𝐹 . In this configuration (𝑝 = 2, set of points

𝐹 given a priori and static) the complexity of this algorithm

is in O(𝑛 log𝑛) which makes it competitive in comparizon

with other (brute-force or sophisticated) algorithms.

3 NUMERICAL EXPERIMENTS

The algorithm is coded in Julia language (version 1.6) [1, 14], uses

the algebraic modeling language JuMP (version 0.21.8) [2, 15, 19] for

representing and solving the optimisation problems. GLPK (version

4.65) [12] is selected as MIP solver in our experiments.

The bi-objective set partitioning problem (2-SPA) experimented

is a particular (𝑝-01LP) problem belonging to the class of MultiOb-

jective Combinatorial Optimization problems (MOCO) [4]. Never-

theless, the specific structure of the SPA is not exploited. The 2-SPA

can be formulated as follows:

min 𝑧 (𝑥) = 𝐶𝑥

subject to 𝐴𝑥 = 1

𝑥 ∈ {0, 1}𝑛

where 𝐶 ∈ Z𝑝×𝑛 , and 𝐴 ∈ {0, 1}𝑚×𝑛 .
The sets of non-dominated points 𝑌𝑁 of 2-SPA instances are

obtained with the vOptSolver [10, 24], in particular with the pack-

age vOptGeneric.jl where the solving method selected is the

𝜖-constraint method [13] with a step 𝜖 set to 1.

3.1 Illustration step by step

This illustration is based ont the dataset sppnw11 which contains

39 constraints and 8820 variables. The algorithm runs with:

• 𝑛𝐿= 10 generators,

• maxTrial= 5 trials per generator,
• maxTime=∞ (no timeout activated).

The ranges Δ1
and Δ2

on objective 1 and 2 derived from the lower

bound set 𝐿 are:

𝑧1

𝑚𝑖𝑛
=116254.50 ↔ 𝑧1

𝑚𝑎𝑥=134099.22 (Δ1=17844.72)

𝑧2

𝑚𝑖𝑛
=38404.22 ↔ 𝑧2

𝑚𝑎𝑥=70704.00 (Δ2=32299.78)

Figures 3 to 6 depicte the activity of the algorithm at the end of

its major steps. Figures 6 to 7 report the upper bound set𝑈 obtained

for respectively the values 𝑛𝐿 set to 10 and 30.

Figure 3: Lower bound set 𝐿 computed.

Figure 4: Rounded and projected points computed.

Figure 5: Feasible points computed and Upper bound set 𝑈

obtained.

Figure 6: Comparizon of theUpper bound set𝑈 obtained and

non-dominated points 𝑌𝑁 .

3.2 Numerical instances

Table 1 reports the dataset used for conducting the numerical exper-

iments. The 44 instances come from the OR-library [20]. A second

objective as been generated. The coefficients of the second objective

is a random permutation of the coefficients of the first objective.

In such a way, the numerical characteristics of both objectives are

identical. This dataset will be uploaded on the vOptLib repository

soon (https://github.com/vOptSolver/vOptLib).

3.3 Quality measure

To evaluate the quality of a𝑈 , the exclusive hypervolume contribu-

tion of solutions is computed (see Figure 8) and gives

𝑟 =
𝐴𝑈

𝐴𝑌𝑁

https://github.com/vOptSolver/vOptLib

Figure 7: Run with 30 generators.

where

• 𝐴𝑈 is the area covered by𝑈

• 𝐴𝑌𝑁 is the area covered by 𝑌𝑁
• the reference point is provided by the two extreme points of

𝑌𝑁 plus 1 on each extremal value.

Higher is the value of the indicator 𝑟 , better is the upper bound set

𝑈 .

Figure 8: For a bi-objective minimisation problem, illustra-

tion of the quality measure. (symbol ‘+’, 𝑦 ∈ 𝑌𝑁 ; symbol ‘•’,
𝑦 ∈ 𝑈 ; symbol ‘×’, the reference point)

3.4 Numerical results

Experiments have been performed on a computer equipped with

an Intel(R) Core(TM) i7-10870H processor running at 2,20 GHz

and with 16 Go of RAM DDR4. The first experiment is done with

𝑛𝐿 = 10, while the second is done with 𝑛𝐿 = 30. The two other

parameters are set to: maxTrial=5 and maxTime=∞.
Table 2 report a first wave of results collected during the numer-

ical experiments. For the 44 instances,

• #𝑈 shows the number of solutions detected and pushed into

the upper bound set𝑈 ,

• the CPUt in seconds consumed by the algorithm,

• 𝑟 is the measure of the quality of𝑈

For only one instance (sppaa05), the algorithm fails to return an

upper bound set, when 𝑛𝐿 = 10. For only two instances (sppnw17
and sppnw21), the quality measure is lower with 𝑛𝐿 = 30 than with

𝑛𝐿 = 10. For 25 instances (57%), the quality indicator is greater of

equal to 50% when 𝑛𝐿 = 10. The situation increases to 34 instances

(77%) when 𝑛𝐿 = 30. Even if the current implementation of the

proposed algorithm may be polished, the CPUt appears competitive

especially for instances where computing 𝑌𝑁 is expensive.

4 CONCLUSION AND DISCUSSION

« Gravity Machine » is a primal heuristics inspired by « Feasibility

Pump » to compute an upper bound set 𝑈 for multi-objective 0-1

linear optimisation problems. The aims of the algorithm is to be

competitive in quality and in CPUt in order to embed it into a

multi-objective branch and bound algorithm. A very first version

is presented, evaluated using instances of set partitioning problem

and analyzed in comparison with the non-dominated points for

all instances. The extended version of this paper will go further in

the experimentation, as well in the details allowing to reproduce

exactly the algorithm discussed.

This is an ingoing work and already the results are clearly en-

couraging. Many variants have been specified and several of them

have been already experimented. In the mid term, the variants will

be presented and analyzed, as well the experimentation on others

optimisation problems.

REFERENCES

[1] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. Julia:

A Fresh Approach to Numerical Computing. SIAM Rev. 59, 1 (2017), 65–98.

https://doi.org/10.1137/141000671 arXiv:https://doi.org/10.1137/141000671

[2] Iain Dunning, Joey Huchette, and Miles Lubin. 2017. JuMP: AModeling Language

for Mathematical Optimization. SIAM Rev. 59, 2 (2017), 295–320.
[3] Matthias Ehrgott. 2005. Multicriteria Optimization. Springer-Verlag New York,

Inc., Secaucus, NJ, USA.

[4] Matthias Ehrgott and Xavier Gandibleux. 2000. A survey and annotated bibliog-

raphy of multiobjective combinatorial optimization. OR Spectrum 22, 4 (2000),

425–460.

[5] Matthias Ehrgott and Xavier Gandibleux. 2001. Bounds and Bound Sets for

Biobjective Combinatorial Optimization Problems. In Multiple Criteria Decision
Making in the New Millennium (Lecture Notes in Economics and Mathematical
Systems, Vol. 507), Murat Koksalan and Stan Ziont (Eds.). Springer, 241–253. 15th

International conference in Multiple Criteria Decision-Making Proceedings.

[6] Matthias Ehrgott and Xavier Gandibleux. 2004. Approximative solution methods

for multiobjective combinatorial optimization. Top 12, 1 (2004), 1–63. https:

//doi.org/10.1007/BF02578918

[7] Matthias Ehrgott and Xavier Gandibleux. 2007. Bound sets for biobjective com-

binatorial optimization problems. Computers & Operations Research 34 (2007),

2674–2694.

[8] Michael Emmerich and André Deutz. 2018. A tutorial on multiobjective opti-

mization: fundamentals and evolutionary methods. Natural Computing 17 (2018),

585–609. https://doi.org/10.1007/s11047-018-9685-y

[9] Matteo Fischetti, Fred Glover, and Andrea Lodi. 2005. The feasibility pump.

Mathematical Programming 104, 1 (01 Sep 2005), 91–104. https://doi.org/10.1007/

s10107-004-0570-3

[10] Xavier Gandibleux, Gauthier Soleilhac, Anthony Przybylski, and Stefan Ruzika.

2017. vOptSolver: an open source software environment for multiobjective

https://doi.org/10.1137/141000671
https://arxiv.org/abs/https://doi.org/10.1137/141000671
https://doi.org/10.1007/BF02578918
https://doi.org/10.1007/BF02578918
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1007/s10107-004-0570-3
https://doi.org/10.1007/s10107-004-0570-3

Figure 9: Plot of the quality measure for all instances when

𝑛𝐿 = 10 and 𝑛𝐿 = 30 (visual representation of the values re-

ported in Table 2)

.

mathematical optimization. IFORS2017: 21st Conference of the International

Federation of Operational Research Societies. July 17-21, 2017. Quebec City

(Canada).

[11] Guillaume Gasnier. 2021. Heuristiques primales multi-objectifs. Mémoire de

“Travail d’étude et de recherche”, Université de Nantes.

[12] GLPK. [n.d.]. GNU Linear Programming Kit. https://www.gnu.org/software/glpk/.

Accessed: 2021-06-05.

[13] Yacov V. Haimes, Leon S. Lasdon, and David A. Wismer. 1971. On a Bicriterion

Formulation of the Problems of Integrated System Identification and System

Optimization. IEEE Transactions on Systems, Man, and Cybernetics SMC-1, 3

(1971), 296–297.

[14] Julia. [n.d.]. The Julia Language. https://julialang.org/. Accessed: 2021-06-05.

[15] JuMP. [n.d.]. A modeling language for mathematical optimization embedded in

Julia. https://github.com/jump-dev/JuMP.jl. Accessed: 2021-06-05.

[16] Abdullah Konak, David W. Coit, and Alice E. Smith. 2006. Multi-objective opti-

mization using genetic algorithms: A tutorial. Reliability Engineering & System
Safety 91, 9 (2006), 992–1007. https://doi.org/10.1016/j.ress.2005.11.018 Special

Issue - Genetic Algorithms and Reliability.

[17] Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P. Preparata. 1975. On Finding

the Maxima of a Set of Vectors. J. ACM 22, 4 (Oct. 1975), 469–476. https:

//doi.org/10.1145/321906.321910

[18] Qi Liu, Xiaofeng Li, Haitao Liu, and Zhaoxia Guo. 2020. Multi-objective meta-

heuristics for discrete optimization problems: A review of the state-of-the-art. Ap-
plied Soft Computing 93 (2020), 106382. https://doi.org/10.1016/j.asoc.2020.106382

[19] Miles Lubin and Iain Dunning. 2015. Computing in Operations Research Using

Julia. INFORMS Journal on Computing 27, 2 (2015), 238–248.

[20] OR-library. [n.d.]. A collection of test data sets for a variety of OR problems.

http://people.brunel.ac.uk/ mastjjb/jeb/orlib/sppinfo.html. Accessed: 2021-06-05.

[21] Aritra Pal and Hadi Charkhgard. 2019. A Feasibility Pump and Local Search Based

Heuristic for Bi-Objective Pure Integer Linear Programming. INFORMS Journal
on Computing 31, 1 (2019), 115–133. https://doi.org/10.1287/ijoc.2018.0814

[22] Aritra Pal and Hadi Charkhgard. 2019. FPBH: A feasibility pump based heuristic

for multi-objective mixed integer linear programming. Computers & Operations
Research 112 (2019), 104760. https://doi.org/10.1016/j.cor.2019.07.018

[23] Anthony Przybylski and Xavier Gandibleux. 2017. Multi-objective branch and

bound. European Journal of Operational Research 260, 3 (2017), 856–872. https:

//doi.org/10.1016/j.ejor.2017.01.032

[24] vOptSolver. [n.d.]. Solver of multiobjective linear optimization problems. https:

//github.com/vOptSolver Accessed: 2021-06-05.

https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1145/321906.321910
https://doi.org/10.1145/321906.321910
https://doi.org/10.1016/j.asoc.2020.106382
https://doi.org/10.1287/ijoc.2018.0814
https://doi.org/10.1016/j.cor.2019.07.018
https://doi.org/10.1016/j.ejor.2017.01.032
https://doi.org/10.1016/j.ejor.2017.01.032
https://github.com/vOptSolver
https://github.com/vOptSolver

Table 1: Numerical instances, with their characteristics

(number of constraints, number of variables), and the exact

solutions (𝑌𝑁 , CPUtime consumed)

Instances #Constraints #Variables #𝑌𝑁 CPUt (s)

sppaa03 825 8627 265 1814.02

sppaa05 801 8308 310 2564.50

sppnw01 135 51975 421 6031.67

sppnw03 59 43749 47 365.49

sppnw04 36 87482 26 584.73

sppnw05 71 288507 73 4604.59

sppnw06 50 6774 20 29.32

sppnw07 36 5172 20 16.40

sppnw08 24 434 20 0.29

sppnw09 40 3103 22 5.99

sppnw10 24 853 13 0.20

sppnw11 39 8820 28 12.88

sppnw12 27 626 43 1.61

sppnw13 51 16043 125 503.94

sppnw14 73 123409 103 19082.31

sppnw15 31 467 2 0.15

sppnw16 139 148633 7 519.62

sppnw17 61 118607 58 26875.33

sppnw18 124 10757 23 27.15

sppnw19 40 2879 20 5.19

sppnw20 22 685 9 0.71

sppnw21 25 577 10 0.46

sppnw22 23 619 19 1.21

sppnw23 19 711 6 0.16

sppnw24 19 1366 21 1.77

sppnw25 20 1217 17 1.07

sppnw26 23 771 19 0.50

sppnw27 22 1355 12 0.49

sppnw28 18 1210 6 0.28

sppnw29 18 2540 12 2.62

sppnw30 26 2653 8 1.82

sppnw31 26 2662 16 3.59

sppnw32 19 294 8 0.08

sppnw33 23 3068 10 2.79

sppnw34 20 899 14 0.70

sppnw35 23 1709 14 1.20

sppnw36 20 1783 10 3.66

sppnw37 19 770 10 1.29

sppnw38 23 1220 8 1.15

sppnw39 25 677 12 0.81

sppnw40 19 404 10 0.25

sppnw41 17 197 11 5.19

sppnw42 23 1079 10 0.77

sppnw43 18 1072 21 7.03

Table 2: Numerical results for each instances (number of

points within the upper bound set 𝑈 and CPUtime con-

sumed)

Instances #𝑈 CPUt (s) r (%) #𝑈 CPUt (s) r (%)

sppaa03 3 85.56 50.1 4 433.92 56.61

sppaa05 0 73.55 0.0 2 398.04 8.92

sppnw01 3 37.06 22.79 9 186.98 75.49

sppnw03 1 24.95 19.94 4 53.91 50.02

sppnw04 2 17.0 10.46 3 71.87 65.06

sppnw05 5 96.33 28.92 9 245.93 39.38

sppnw06 1 1.87 42.98 4 5.03 73.01

sppnw07 4 0.87 44.36 4 3.22 44.36

sppnw08 5 0.04 59.72 7 0.13 64.25

sppnw09 5 0.42 89.7 5 1.65 90.23

sppnw10 6 0.08 88.92 7 0.26 97.7

sppnw11 4 1.34 93.74 6 4.24 99.06

sppnw12 4 0.07 59.0 6 0.19 79.87

sppnw13 2 2.47 63.53 7 9.09 66.76

sppnw14 4 30.35 54.98 8 113.73 66.96

sppnw15 2 0.07 0.22 3 0.14 100.0

sppnw16 2 76.78 1.13 2 223.7 1.13

sppnw17 1 71.19 60.0 2 148.67 30.10

sppnw18 2 6.24 0.69 1 21.22 20.65

sppnw19 3 0.38 46.22 3 1.19 71.24

sppnw20 1 0.07 68.84 2 0.21 70.32

sppnw21 2 0.06 91.56 3 0.18 82.37

sppnw22 3 0.09 74.55 4 0.22 93.33

sppnw23 3 0.08 91.43 4 0.22 91.43

sppnw24 3 0.16 53.27 3 0.43 55.36

sppnw25 2 0.15 34.54 3 0.43 76.08

sppnw26 2 0.08 52.57 4 0.24 52.81

sppnw27 1 0.15 37.8 1 0.48 37.8

sppnw28 2 0.13 75.87 2 0.31 75.87

sppnw29 2 0.26 51.55 4 0.71 74.94

sppnw30 1 0.25 0.0 1 1.03 66.91

sppnw31 2 0.38 43.89 3 1.19 56.29

sppnw32 3 0.06 96.99 3 0.09 96.99

sppnw33 1 0.41 35.51 4 1.21 39.77

sppnw34 1 0.09 50.19 2 0.29 50.2

sppnw35 2 0.21 81.26 4 0.58 91.87

sppnw36 1 0.19 86.13 1 0.56 86.13

sppnw37 1 0.08 0.02 2 0.2 4.25

sppnw38 2 0.11 91.29 2 0.32 91.29

sppnw39 2 0.16 0.0 3 0.32 76.76

sppnw40 1 0.05 67.54 1 0.13 67.54

sppnw41 3 0.02 87.17 3 0.07 87.17

sppnw42 2 0.14 93.59 3 0.36 94.02

sppnw43 4 0.12 20.59 5 0.3 46.1

𝑛𝐿=10 𝑛𝐿=30

	Abstract
	1 Introduction
	1.1 Definitions and Notations
	1.2 Solutions and performance vectors
	1.3 Bound sets
	1.4 State of the art

	2 The algorithm
	2.1 Principle and components
	2.2 Outline of the algorithm

	3 Numerical experiments
	3.1 Illustration step by step
	3.2 Numerical instances
	3.3 Quality measure
	3.4 Numerical results

	4 Conclusion and Discussion
	References

