
Preference Learning for Horizontal Collaboration in Transport
Operations

Federico Toffano

Insight Centre for Data Analytics, School of Computer

Science and IT

University College Cork, Ireland

federico.toffano@insight-centre.org

Nic Wilson

Insight Centre for Data Analytics, School of Computer

Science and IT

University College Cork, Ireland

nic.wilson@insight-centre.org

ABSTRACT
We consider a system computing collaborative delivery plans to

deliver a set of orders, by sharing trucks between the companies

involved. Collaborative journeys are evaluated by the decision-

makers considering multiple Key Performance Indicators (KPIs)

such as cost, distance and time. Knowing the decision-makers’ pref-

erences over the KPIs would enable us to compute personalised

solutions that increase the chance of finding attractive collabora-

tions. With this work we address two problems. Firstly, we show

how we can learn the decision-makers’ preferences over the KPIs

by observing their interactions with the system. Secondly, we show

how to estimate the improvement or disimprovement in the KPIs

arising from the collaboration.

KEYWORDS
Preference Learning; Collaborative Transport; Intelligent Logistics;

Shapley Value

ACM Reference Format:
Federico Toffano and Nic Wilson. 2021. Preference Learning for Horizontal

Collaboration in Transport Operations . In Proc. of the 1st Workshop on Multi-
Objective Decision Making (MODeM), Online, July 14-16, 2021, IFAAMAS,

9 pages.

1 INTRODUCTION
Horizontal collaborations are inter-organisational relationships be-

tween two or more companies whose purpose is sharing resources

to achieve a common objective. LOGISTAR (Enhanced data man-
agement techniques for real time logistics planning and scheduling)
is an EU research project to develop a system to support horizontal

collaborations of transport operations between competitors, and

one of the main purposes of this project is the computation of col-

laborative delivery plans sharing trucks between the companies

involved. Collaborative deliveries can be very beneficial, not only

economically but also environmentally, since the optimisation of

the truck-load reduces the number of journeys and the total CO2

emissions. In fact, companies cannot always fill their trucks, espe-

cially during the return journey, when the truck could be completely

empty. Therefore sharing the truck capacity with other companies

can improve the efficiency of a network of transports with benefits

for all the partners involved.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Proc. of the 1st Workshop on Multi-Objective Decision Making (MODeM), Hayes, Mannion,
Vamplew (eds.), July 14-16, 2021, Online. © 2021 Copyright held by the owner/author(s).

The horizontal collaboration we focus on in this paper involves

two companies, that we call P and N, with whom we have defined

the problem requirements and who will be involved in the testing

of our software. Decision makers from P and N aim to find collabo-

rative delivery plans sharing some of their trucks. In this context,

the collaborative journeys proposed by the LOGISTAR system are

computed by an optimiser and evaluated by the decision-makers

considering multiple Key Performance Indicators (KPIs) such as

cost, distance and time. The optimiser needs then to consider such

KPIs during the optimisation of a delivery plan for a set of input

orders, and each decision-maker may have different preferences

with respect to the KPIs. Thus a fair objective function for the com-

putation of collaborative journeys should consider the preferences

of all partners involved.

Our goal is to learn the preferences of the decision-makers by

observing their decisions with respect to the collaborative journeys

proposed by the system. We assume a parameterised preference

model for each decision-maker, with the domain of the parameters

being the set of all the feasible preferences. The preference model

considered is the weighted sum of the KPIs evaluating the journeys,

and the weights of the KPIs vector define the decision-maker pref-

erences. The general idea is to estimate the preference model of the

two decision-makers involved and merge them to create a common

preference model used as the objective function for the optimiser

computing the collaborative journeys. The method presented in

our paper to compute the joint preference model applies only for

two decision-makers; however, it could be easily extended to cover

a generic number of decision-makers. Although the details on how

the optimiser computes the journeys are out of the scope of this

paper, it is important to note that the goal is to find a collabora-

tive solution that performs better than non-collaborative solutions

and not a collaborative solution that reduces the costs for all the

decision-makers involved. The arrangement between the partners

P and N is based on mutual trust, and it is not in the interest of

either partner to undermine that trust by deliberately misleading

the other party.

Our preference learning method is based on the observation of

the acceptance or rejection of the collaborative journeys proposed

by the system. In the user interface, each collaborative journey is

associated with two KPIs vectors: (i) the KPIs of the collaborative

journey computed by the optimiser; (ii) an estimated KPIs vector for

a non-collaborative delivery of the orders planned in the collabora-

tive journey. This enables the decision maker to consider potential

advantages and disadvantages of the collaborative journey, in terms

of the KPIs, by comparing the components of these KPIs vectors.

The decision-maker is also asked to input a motivation for their

MODeM ’21, July 14-16, 2021, Online Federico Toffano and Nic Wilson

decisions from a predefined list, and we generate (soft) constraints

on the preference model of the decision-maker if the motivation is

related to the two KPIs vectors. The constraints generated from all

the past decisions will then be used as input for a Support Vector

Machine (SVM) algorithm to estimate the weights vector of the

decision-maker.

The twomain contributions of this work are the following. Firstly,

we propose a method to learn the decision-makers’ preferences by

observing the motivation of the decisions taken in the system. In

particular, we allow each decision-maker to express the importance

of a specific KPI, and we show how to translate this preference

information into soft constraints for the preference model. Secondly,

we present a method based on the Shapley value to split the KPIs

of a journey among the corresponding orders. This is a crucial step

of our preference learning approach since we need to compare

a collaborative KPIs vector associated with a single collaborative

journey with a non-collaborative KPIs vector of the same orders

composing the collaborative journey. However, the orders of a

collaborative journey may be part of multiple non-collaborative

journeys along with other orders. Thus, supposing, for example,

two companies, we may very well not have two non-collaborative

journeys that together deliver the same orders as the collaborative

journey. Then we cannot directly compare the corresponding KPIs

vectors. On the other hand, if we have a method that generates a

KPIs vector for any given order we could evaluate any set of orders

by combining the corresponding KPIs vectors.

The rest of the paper is organised as follows. Section 2 provides

a brief literature review of relevant works. Section 3 defines the key

concepts and goals of our work. Section 4 presents our preference

learning approach based on the observation of the interaction of

the decision-makers with the system. Section 5 defines how to

estimate the KPIs of a generic set of orders using the KPIs of the

journeys planned by the optimiser. Section 6 shows how to split the

KPIs of a journey among the corresponding orders with a method

based on the Shapley value. Section 7 presents some computational

results showing the time performances of the methods proposed in

this work. Section 8 summarises our work, including some related

future works.

2 RELATEDWORK
The problem of computing collaborative journeys delivering or-

ders of two or more e-logistics operators is a collaborative Vehicle

Routing Problem (VRP). See, e.g., [10] for a survey on this topic. To

the best of our knowledge, there is no work on preference learn-

ing for multi-objective collaborative VRP. In general, collaborative

VRPs are classified as centralised or decentralised. In centralised

systems the total profit is maximised jointly (see, e.g., [5, 8, 32]);

on the other hand, in a decentralised system, collaborations are

evaluated separately by the partners sharing a limited amount of

information (see, e.g., [4, 6, 23]). Our work could be of interest for

both of these settings in a multi-objective context since we first

learn the preferences of every single partner over a set of KPIs and

afterwards we combine them to define a joint preference model.

Thus, the preferences of every single partner could be used in a

decentralised system to define personalised objective functions not

shared among the collaborators; the joint preference model instead

could be used for the computation of a fair collaborative solution

with a centralised system.

More generally, our work could be classified as a multi-objective

multi-agent system (MOMAS) with a utility-based approach (see,

e.g., [18] for a survey). One of the main goals of these systems is to

define a utility function for every agent mapping a vector of values

evaluating the objects to optimise to a scalar value. MOMAS are

defined as cooperative (see, e.g., [3, 20]) if all the agents collaborate
to improve the performance of the entire system, or competitive
(see, e.g., [7, 17]) if any win for one agent implies a loss for another.

In our context, we have a mix of these two characterisations since

we assume that the LOGISTAR partners collaborate to improve the

whole network of transportation; however, the preferences over

the KPIs may be conflicting.

In the literature we can find several approaches to learn a utility

function representing the preferences of the decision-makers. In

particular, we are interested in preference model represented by

the weighted sum of the objectives with the weights represent-

ing the possible preferences of the decision-makers. The classical

preference elicitation approach arises from multiattribute utility

theory [9, 19]. It aims to precisely specify such a utility function

with a series of questions for the users to identify some key values.

Alternative methods based on interviews are such as the Analytic

Hierarchy Process [16, 21, 28, 31]. However, these approaches can

be difficult and error-prone tasks. Artificial Intelligence (AI) meth-

ods based on comparisons of alternatives require instead much

less cognitive effort. The idea is to show to the decision-maker

two or more alternatives, asking them to select the most preferred

alternative or to indicate a preference order over the whole set of

alternatives. Certain qualitative approaches [13, 22, 25–27] reduce

the uncertainty of the value function by reducing the set of feasible

parameters by translating input preferences into hard constraints

on the parameter space. These methods are efficient in terms of the

number of queries for the decision-makers to obtain a good esti-

mation of the preference model; however, inconsistent preference

information with respect to the real (unknown) preference model

may lead to a wrong estimation of the preference model. In our

context, we assume that we will collect tens or hundreds of input

preferences, increasing then the chance of collecting inconsistent

data. Therefore, we adopted a machine learning approach based on

SVM [12, 15] where the input preference information is translated

into soft constraints. Alternatively, one could adopt a Bayesian

approach [1, 11, 29, 30] that represents the user preferences with a

probability distribution over the feasible parameters of the value

function, and the input preference information is used to update

the probability distribution.

3 FORMAL SETTINGS
Order: Let 𝑂 be the input set of orders from either N or P. In

our context, an order 𝛼 ∈ 𝑂 is an atomic element representing a

set of items that has to be transported from a pickup location to a

drop-off location.

Journey: We define a journey (of a truck) to be a non-empty set of

orders 𝐽 ⊆ 𝑂 . A journey is defined to be collaborative if it contains
at least one order of N and at least one order of P. Otherwise it is

defined to be non-collaborative. Each journey 𝐽 is evaluated with a

Preference Learning for Horizontal Collaboration in Transport Operations MODeM ’21, July 14-16, 2021, Online

vector 𝐾 (𝐽) = (𝐾1 (𝐽), . . . , 𝐾5 (𝐽)) ∈ IR5 representing the following

KPIs:

• Monetary cost, which includes the driver compensation and

the fuel cost.

• Total journey distance in kilometres.

• Total journey time in hours.

• CO2 emissions of the journey.

• Empty running, i.e., distance travelled in kilometres without

any load.

Preference model: We define

𝑢𝑤 (𝑥) = 𝑤 · 𝑥 =

5∑
𝑖=1

𝑤𝑖𝑥𝑖 (1)

to be the value function of a decision-maker parametrised with

respect to the weights vector 𝑤 , where 𝑥 is a KPIs vector and𝑤 ∈ U
andU = {𝑤 ∈ 𝐼𝑅5 : 𝑤𝑖 ≥ 0,

∑
5

𝑖=1𝑤𝑖 = 1}.
The (unknown) weights vector 𝑤 defines the trade-offs of a

decision-maker with respect to the KPIs. An estimation of the

weights vector 𝑤 defines then a value function 𝑢𝑤 (𝑥). The sim-

ple structure of this value function may not precisely describe the

real user preferences. However, this was a deliberate choice aimed

to have a simple objective function that can be used for a fast com-

putation of personalised solutions with an optimiser. Note that the

goal is to minimise the KPIs and thus to minimise the objective

function. We assume that the KPIs are independent, so that none is

a function of the others. (If this were the case, there would be an infi-

nite number of utility functions representing the same preferences;

we could solve this issue by eliminating appropriate KPIs.)

Goal 1: Wewant to learn two weights vectors𝑤𝑛
and𝑤𝑝

, one for

N and one for P, and a common weights vector𝑤𝑐
which considers

the preferences of both N and P.

Solution: We define a solution as a non-empty set of journeys.

A solution is defined to be collaborative if it is optimised with an

objective function considering the weights vector and the input

orders of all the partners involved. A solution is defined to be non-
collaborative if it is optimised considering the weights vector and

the input orders of a single partner. The objective function of the

optimiser is the weighted sum of the sum of the KPIs associated

with the journeys planned in a solution. In our context, an optimiser

computes a collaborative solution for N and P, using the weights

vector𝑤𝑐
, and two non-collaborative solutions, one for N and one

for P, using the weights vectors𝑤𝑛
and𝑤𝑝

respectively.

Goal 2: Let Z𝑐
be the set of collaborative journeys of the col-

laborative solution, i.e., the set of journeys of the collaborative

solution containing at least one order from N and one order from

P. The system will show to the decision-makers only the collabo-

rative journeysZ𝑐
. For a collaborative journey 𝐽𝑐 ∈ Z𝑐

, we want

to compute an estimated non-collaborative KPIs vector 𝐸 (𝐽𝑐) =
(𝐸1 (𝐽𝑐), . . . , 𝐸5 (𝐽𝑐)) ∈ IR5 to estimate the improvement or disim-

provement in the KPIs arising from the collaborative journey 𝐽𝑐 .

The estimated non-collaborative KPIs vector 𝐸 (𝐽𝑐) will then be

shown to the decision-makers along with 𝐾 (𝐽) to facilitate the

decision, and the decision-makers’ preference between 𝐾 (𝐽) and
𝐸 (𝐽𝑐) will be used to learn their weights vector. It might be argued

that the entire collaborative solution involving all the journeys

should be evaluated with respect to a non-collaborative solution

rather then evaluating every single journey. However, the industrial

partners of Logistar wanted to have the possibility of evaluating

each individual collaborative journey.

4 PREFERENCE LEARNING
The preference learning method considered in this work is based

on the observations of the preferences of the decision-makers with

respect to the KPIs vectors evaluating the collaborative journeys.

For each collaborative journey 𝐽𝑐 ∈ Z𝑐
computed by the optimiser,

the system shows to the decision-makers the details of the jour-

ney, a KPIs vector 𝐾 (𝐽𝑐) evaluating the journey, and an estimated

KPIs vector 𝐸 (𝐽𝑐) evaluating a non collaborative delivery for the

orders in 𝐽𝑐 . The purpose of the latter KPIs vector is to evaluate

the improvement or disimprovement in the KPIs arising from the

collaboration. The preferences of the decision-makers arising from

the comparison of 𝐾 (𝐽𝑐) with 𝐸 (𝐽𝑐) will be used to generate con-

straints for an SVM algorithm estimating the value functions of the

two decision-makers.

Constraints generation: The two decision-makers N and P need to

either accept or reject each collaborative journey, and also express a

motivation for their decision from a predefined list (see Table 1). We

want to distinguish three scenarios with the selected motivation:

(1) The decision was made considering the KPIs.

(2) The decision was made considering mainly a specific KPI.

(3) The decision was made for other reasons.

Scenario (1). Suppose that a decision-maker accepts a collabora-

tive journey selecting better collaborative KPIs overall as motivation.

Since the motivation is related to the KPIs vector, we translate this

input into the following (soft) constraints

𝑤 · (𝐾 (𝐽𝑐) − 𝐸 (𝐽𝑐)) ≤ 0, (2)

(using the notation introduced in Equation 1) where 𝐾 (𝐽𝑐) is the
KPIs vector associated with the collaborative journeys, 𝐸 (𝐽𝑐) is the
estimated non-collaborative KPIs vector, and𝑤 is the (unknown)

weights vector of the decision-maker. If, instead, the decision-maker

rejects the collaborative solution selecting better non-collaborative
KPIs overall as motivation, then we learn the constraint𝑤 · (𝐸 (𝐽𝑐) −
𝐾 (𝐽𝑐)) ≤ 0.

Scenario (2). In this case, we learn the same (soft) constraint as

scenario (1) (since the decision was made considering the KPIs) and

a further set of (soft) constraints to highlight the importance of

the main KPI considered. Suppose that a decision-maker accepts a

collaborative journey and that the main KPI considered has index 𝑖 .

The constraints we learn in this case are Equation 2 (scenario (1)),

and also the constraint:

𝑤𝑖 (𝐾𝑖 (𝐽𝑐) − 𝐸𝑖 (𝐽𝑐)) +𝑤 𝑗 (𝐾𝑗 (𝐽𝑐) − 𝐸 𝑗 (𝐽𝑐)) ≤ 0 for all 𝑗 ≠ 𝑖 . (3)

If the decision-maker rejects the collaborative journey, we learn

the same constraints but exchanging 𝐾 (𝐽𝑐) and 𝐸 (𝐽𝑐). Intuitively,
the set of constraints given by Equation 3 means that the gain of

the 𝑖-th KPI is more important than any other eventual loss in the

remaining KPIs.

Scenario (3). In this case we do not learn any constraint since

we assume that the decision was not related to the KPIs vector.

MODeM ’21, July 14-16, 2021, Online Federico Toffano and Nic Wilson

Table 1: Possible motivations shown to the user for their acceptance or rejection of a collaborative journey, and the corre-
sponding scenarios described in Section 4.

Acceptance Rejection Scenario

Better collaborative KPIs overall Better non-collaborative KPIs overall (1)

Better collaborative cost Better non-collaborative cost (2)

Better collaborative distance Better non-collaborative distance (2)

Better collaborative time Better non-collaborative time (2)

Better collaborative CO2 emissions Better non-collaborative CO2 emissions (2)

Better collaborative empty running Better non-collaborative empty running (2)

Other reasons Other reasons (3)

Example 4.1. Suppose we have only three KPIs, e.g., cost in euro,

distance in kilometres and time in hours, and suppose that a decision-

maker accepts a collaborative journey selecting better collaborative
cost as motivation (scenario(2)). Let 𝐾 (𝐽𝑐) = (1000, 100, 2.5) and
𝐸 (𝐽𝑐) = (1200, 80, 3). Then we learn:

(a) (𝑤1,𝑤2,𝑤3) · (1000, 100, 2.5) ≤ (𝑤1,𝑤2,𝑤3) · (1200, 80, 3)
(b) (𝑤1,𝑤2) · (1000, 100) ≤ (𝑤1,𝑤2) · (1200, 80)
(c) (𝑤1,𝑤3) · (1000, 2.5) ≤ (𝑤1,𝑤3) · (1200, 3)
Constraint (a) corresponds to Equation 2. Constraints (b) and (c)

corresponds to Equation 3. Constraint (b) can be interpreted as: the

collaborative KPIs are preferred even if we ignore the loss in time

of 𝐸 (𝐽𝑐) with respect to 𝐾 (𝐽𝑐). Constraint (c) does not reduce the
set of possible weights vectors since it is always verified.

Estimation of the weights vectors: To estimate the weights vec-

tor of a specific decision-maker, we use an SVM algorithm named

Ranking SVM [12, 15]. Roughly speaking, the idea is to compute

the hyperplane containing the origin that produces the largest mar-

gin (distance) from a set of preference points representing input

preference constraints. In our context, the preference points are de-

rived from the inequalities learned observing the decision-maker’s

preferences concerning the KPIs shown by the system, and the

normal vector of the output hyperplane represents the estimated

decision-maker’s trade-offs between the KPIs.

Ranking SVM is defined by a quadratic optimisation problem

with linear soft constraints. Formally, the optimisation problem to

solve is the following:

argmin

𝜔,𝜉𝑘

1

2

∥𝜔 ∥2 +𝐶
𝑁∑
𝑘=1

𝜉𝑘 (4a)

subject to

1 + 𝜔 · 𝜆𝑘 − 𝜉𝑘 ≤ 0 ∀𝑘 (4b)

𝜉𝑘 ≥ 0 ∀𝑘 (4c)

𝜔𝑖 ≥ 0 ∀𝑖 ∈ {1, . . . , 5}. (4d)

where 𝜔 ∈ IR5 is the normal of the hyperplane estimated by SVN

and 𝑁 is the number of constraints. This method is very similar

to that described by Equation 13 of [15]. The differences are in the

normal 𝜔 of the hyperplane, which in our case is non-negative

(Equation 4d) since we do not want to penalise any KPI, and in the

sign of 𝜆𝑘 (Equation 4b) since our goal is to minimise the value

function of the decision-maker (and not to maximise it). 𝜉𝑘 is the

slack variable used to assign the penalty to the 𝑘-th constraint when

it is violated. 𝐶 is a constant scaling the penalty of inconsistent

constraints; a larger value of 𝐶 corresponds to assigning a higher

penalty. 𝜆𝑘 is the coefficients vector of the 𝑘-th constraint derived

from the input preference information of the decision-makers as

described below.

To generate the values 𝜆𝑘 , we first need to normalise the values

range of every component of all the KPIs vectors 𝐾 (𝐽𝑐) and 𝐸 (𝐽𝑐),
dividing it by the corresponding maximum value. This step is re-

quired otherwise the maximisation of the margin performed by the

SVM algorithm could focus mainly on the KPIs with a larger scale.

We consider then a vector𝑀 = (𝑀1, . . . , 𝑀5) ∈ IR5 where𝑀𝑖 is the

maximum value of the 𝑖-th KPI of a database of previous instances.

Thereafter, we define the vector 𝜆𝑘 by scaling the 𝑖-th value of the

𝑘-th constraint learned (whose structure is defined by Equation 2

or Equation 3) by the reciprocal of𝑀𝑖 , for all 𝑖 ∈ {1, . . . , 5}.

Example 4.2. Suppose we have shown to a decision-maker two

collaborative journeys 𝐽 ′ and 𝐽 ′′, from which we derived two con-

straints𝑤 · (𝐾 (𝐽 ′) −𝐸 (𝐽 ′)) ≤ 0 and𝑤 · (𝐸 (𝐽 ′′) −𝐾 (𝐽 ′′)) ≤ 0. Then

the constraints for the SVM problem represented by Equation 4b

are

1 + 𝜔 ·
(
𝐾1 (𝐽 ′) − 𝐸1 (𝐽 ′)

𝑀1

, . . . ,
𝐾5 (𝐽 ′) − 𝐸5 (𝐽 ′)

𝑀5

)
− 𝜉1 ≤ 0 (5a)

and

1 + 𝜔 ·
(
𝐸1 (𝐽 ′′) − 𝐾1 (𝐽 ′′)

𝑀1

, . . . ,
𝐸5 (𝐽 ′′) − 𝐾5 (𝐽 ′′)

𝑀5

)
− 𝜉2 ≤ 0. (5b)

Let𝑀−1 = (1

𝑀1

, . . . , 1

𝑀5

). The normal 𝜔 of the hyperplane com-

puted by the SVM algorithm is related to the constraints defined on

the rescaled KPIs. Thus the estimated weights vector𝑤 of a decision-

maker defining their value function 𝑢𝑤 (𝑥) for a KPIs vector 𝑥 can

be computed with the following transformation 𝑓 : IR
5 → IR:

𝑤 = 𝑓 (𝜔) = 𝜔 ◦𝑀−1
𝜔 ·𝑀−1

(6)

where𝜔 ◦𝑀−1 is the pointwise product (i.e., the Hadamard product)

between 𝜔 and 𝑀−1. The normalisation
1

𝜔 ·𝑀−1 of Equation 6 is

required to obtain a weights vector 𝑤 with

∑
5

𝑖=1𝑤𝑖 = 1, so that

𝑤 ∈ U.

The weights vectors𝑤𝑛
and𝑤𝑝

of the two decision-makers N

and P will then be estimated by transforming with Equation 6 the

two outputs𝜔𝑛
and𝜔𝑝

of our SVM algorithm executed considering

the constraints derived by the preferences of N and P, respectively.

Preference Learning for Horizontal Collaboration in Transport Operations MODeM ’21, July 14-16, 2021, Online

The joint weights vector𝑤𝑐
considering the preferences of two

decision-makers is estimated by transforming with Equation 6 the

midpoint of the segment connecting 𝜔𝑛
and 𝜔𝑝

:

𝑤𝑐 = 𝑓

(
𝜔𝑛 + 𝜔𝑝

2

)
. (7)

The resulting weights vector can be interpreted as a fair set of trade-

offs among the KPIs considering the preferences of the two decision-

makers involved. Thus the corresponding value function 𝑢𝑤𝑐 (·)
can be used as the objective function to compute collaborative

solutions. Supposing we had 𝑛 > 2 decision-makers, one could

compute the joint weights vector as the transform 𝑓 of center of

gravity of the normal vectors 𝜔ℎ
of the hyper-planes ℎ estimated

for every decision-makers, i.e.,𝑤𝑐 = 𝑓

(∑𝑛
ℎ=1

𝜔ℎ

𝑛

)
.

Without any preference information, i.e., when we do not have

received any feedback from the decision-makers regarding the

KPIs vectors, we compute the collaborative and non-collaborative

solutions with a weights vector minimising the cost.

5 COMPUTATION OF 𝐸 (𝐽𝑐)
Our preference elicitationmethod learns the decision-makers’ weights

vector based on their preferences between the KPIs vector 𝐾 (𝐽𝑐)
evaluating a collaborative delivery 𝐽𝑐 , and an estimated KPIs vector

𝐸 (𝐽𝑐) evaluating a corresponding non-collaborative delivery plan

for the orders in 𝐽𝑐 . The idea is that the KPIs vector 𝐸 (𝐽𝑐) will be
considered by the decision-maker to evaluate the improvement or

disimprovement in the KPIs arising from the collaboration. How-

ever, the computation of 𝐸 (𝐽𝑐) is not straightforward since the

non-collaborative deliveries for the orders in 𝐽𝑐 planned in the non-

collaborative solutionsmay be assigned to several non-collaborative

journeys also delivering other orders not in 𝐽𝑐 . Thus, since the KPIs

vector computed by the optimiser evaluates journeys and not single

orders, we may not have a set of non-collaborative KPIs vectors

that can be directly used to evaluate a non-collaborative plan for

the orders in 𝐽𝑐 .

Example 5.1. Suppose we have two orders 𝑁1 and 𝑁2 from N,

and two orders 𝑃1 and 𝑃2 from P. Suppose that the optimiser finds

two distinct collaborative journeys, 𝐽𝑐
1
delivering 𝑁1 and 𝑃1 with

KPIs vector 𝐾 (𝐽𝑐
1
), and 𝐽𝑐

2
delivering 𝑁2 and 𝑃2 with KPIs vec-

tor 𝐾 (𝐽𝑐
2
). The question is: how can we evaluate the value of the

collaboration of each single journey? Consider, for example, the

collaborative delivery 𝐽𝑐
1
. We want to estimate a KPIs vector 𝐸 (𝐽𝑐

1
)

for a non-collaborative delivery for the orders in 𝐽𝑐
1
and evaluate

the collaboration by comparing 𝐾 (𝐽𝑐
1
) with 𝐸 (𝐽𝑐

1
). Suppose that

the computation of a non-collaborative solution leads to two non-

collaborative KPIs evaluating a non collaborative delivery for 𝑁1

and 𝑁 2, and a non-collaborative delivery for 𝑃1 and 𝑃2. The issue is

that we are interested in a non-collaborative KPIs vector evaluating

𝑁 1 and 𝑃1 to estimate the improvement or disimprovement in the

KPIs arising from the collaborative journey 𝐽𝑐
1
, but we do not have

such a KPIs vector since these orders are delivered by two distinct

non-collaborative journeys along with other orders, i.e., 𝑁 2 and 𝑃2.

Our idea is to split the KPIs of the non-collaborative journeys

among the corresponding orders to evaluate a non-collaborative

plan for a generic subset of orders, even if they belong to different

non-collaborative journeys. In fact, having a KPIs vector for every

order, we can estimate the KPIs vector of any subset of orders by

summing up the individual KPIs vectors.

Recall thatZ𝑐
is the set of collaborative journeys of the collabo-

rative solution computed by the optimiser with objective function

𝑢𝑤𝑐 . Our goal is then to estimate a non-collaborative KPIs vector

𝐸 (𝛼) ∈ IR5 for each 𝛼 ∈ 𝐽𝑐 and 𝐽𝑐 ∈ Z𝑐
, and to compute 𝐸 (𝐽𝑐) as:

𝐸 (𝐽𝑐) =
∑
𝛼 ∈𝐽 𝑐

𝐸 (𝛼) . (8)

LetZ𝑛𝑐
be the union of the journeys of the two non-collaborative

solutions for N and P computed by the optimiser based on objective

functions 𝑢𝑤𝑛 and 𝑢𝑤𝑝 , respectively. Suppose that the delivery of

every order planned with the collaborative journeys inZ𝑐
is also

planned in a non-collaborative journey inZ𝑛𝑐
. We then compute

𝐸 (𝛼) as follows
𝐸 (𝛼) = 𝜇 (𝛼)𝐾 (𝐽𝑛𝑐 (𝛼)), (9)

where 𝐽𝑛𝑐 (𝛼) is the unique non-collaborative journey inZ𝑛𝑐
deliv-

ering 𝛼 and with KPIs vector𝐾 (𝐽𝑛𝑐 (𝛼)), and 𝜇 (𝛼) is a non-negative
weight. We call 𝜇 (𝛼) the Shapley weight of 𝛼 , and it is computed

using a method based on the Shapley value described in Section 6.

Roughly speaking, the weights computed by this method attempt

to split fairly the cost of a journey 𝐽𝑛𝑐 among the corresponding or-

ders, considering the extra kilometres required to deliver each single

order. Thus we have that

∑
𝛼 ∈𝐽 𝑛𝑐 𝜇 (𝛼) = 1. Note that

∑
𝛼 ∈𝐽 𝑐 𝐸 (𝛼)

might not be equal to 𝐾 (𝐽𝑐) since 𝐽𝑐 is a collaborative journey,

and the values 𝐸 (𝛼) are computed splitting the corresponding non-

collaborative journeys 𝐽𝑛𝑐 (𝛼).
In our work we also had to address the following issue. The

delivery of an order planned with a collaborative journey in Z𝑐

may not be planned in any of the non-collaborative journeys in

Z𝑛𝑐
. This can happen for several reasons; for example, there may

not be enough trucks to deliver all the orders or there may not be

a feasible solution matching all the delivery time windows of the

input set of orders. Thus we may not be able to compute 𝐸 (𝐽𝑐)
with Equation 8. To overcome this issue we designed a simple fix

described as follows. Let 𝐽𝑐𝑥 ⊆ 𝐽𝑐 be the set of orders scheduled in

the non-collaborative solution, i.e., the set of orders 𝛼 ∈ 𝐽𝑐 such that
there exists 𝐽𝑛𝑐 ∈ Z𝑛𝑐

containing 𝛼 . We compute the estimated

KPIs vector 𝐸 (𝐽𝑐) evaluating the non-collaborative deliveries for
the orders in 𝐽𝑐 as the rescaled sum of the estimated KPIs of the

non-collaborative deliveries of the orders 𝛼 ∈ 𝐽𝑐𝑥 :

𝐸 (𝐽𝑐) = |𝐽
𝑐 |
|𝐽𝑐𝑥 |

∑
𝛼 ∈𝐽 𝑐𝑥

𝐸 (𝛼) = |𝐽
𝑐 |
|𝐽𝑐𝑥 |

∑
𝛼 ∈𝐽 𝑐𝑥

𝜇 (𝛼)𝐾 (𝐽𝑛𝑐 (𝛼)). (10)

The scale factor
| 𝐽 𝑐 |
| 𝐽 𝑐𝑥 | is used to estimate the KPIs of non-collaborative

deliveries of |𝐽𝑐 | orders having the estimation of only |𝐽𝑐𝑥 | orders.
We assume that a scenario with 𝐽𝑐𝑥 = ∅ will not occur; however, in
our implementation we also cover the case 𝐽𝑐𝑥 = ∅ by computing

𝐸 (𝐽𝑐) as the average KPIs vector of the non-collaborative jour-

neys, i.e., 𝐸 (𝐽𝑐) = 1

|Z𝑛𝑐 |
∑

𝐽 𝑛𝑐 ∈Z𝑛𝑐 𝐾 (𝐽𝑛𝑐). This is just to cover

all the possible scenarios, but an average of the KPIs of the non-

collaborative journeys may not return realistic values for 𝐸 (𝐽𝑐).

Example 5.2. Consider three input orders 𝑃1, 𝑃2 and 𝑃3 from

P, and three input orders 𝑁1, 𝑁2 and 𝑁3 from N. Suppose that

the optimiser computes a collaborative solution with the following

MODeM ’21, July 14-16, 2021, Online Federico Toffano and Nic Wilson

collaborative journeys evaluated with KPIs cost in euro, distance

in kilometres and time in hours:

• Journey 𝐽𝑐
1
with KPIs [900, 80, 2] delivering 𝑃1 and 𝑁 1.

• Journey 𝐽𝑐
2
with KPIs [800, 100, 3] delivering 𝑃2 and 𝑁 2.

• Journey 𝐽𝑐
3
with KPIs [1000, 115, 4] delivering 𝑃3 and 𝑁 3.

Also, suppose that the optimiser computes the following non-

collaborative solution:

• Journey 𝐽𝑛𝑐
1

with KPIs [900, 100, 2.5] delivering 𝑃1 and 𝑃2.
• Journey 𝐽𝑛𝑐

2
with KPIs [1000, 70, 2] delivering 𝑁 1.

• Journey 𝐽𝑛𝑐
3

with KPIs [800, 100, 3] delivering 𝑁 2 and 𝑁 3.

Note that we are supposing that the optimiser didn’t find a non-

collaborative journey for order 𝑃3.

The first step of our procedure is to compute the Shapley weight

of the orders of the non-collaborative journeys 𝐽𝑛𝑐
𝑘

with𝑘 ∈ {1, 2, 3}.
(In this example we do not show how to compute the Shapley

weights; see Section 6 for an example). Then we use Equation 9

to estimate the KPIs vectors 𝐸 (𝛼) evaluating a non-collaborative

delivery for the orders 𝛼 planned in the non-collaborative solution:

• 𝜇 (𝑃1) = 0.4; 𝐸 (𝑃1) = [0.4·900, 0.4·100, 0.4·2.5] = [360, 40, 1]
• 𝜇 (𝑃2) = 0.6;𝐸 (𝑃2) = [0.6·900, 0.6·100, 0.6·2.5] = [540, 60, 1.5]
• 𝜇 (𝑁 1) = 1; 𝐸 (𝑁 1) = [1 · 1000, 1 · 70, 1 · 2] = [1000, 70, 2]
• 𝜇 (𝑁 2) = 0.4;𝐸 (𝑁 2) = [0.4·800, 0.4·100, 0.4·3] = [320, 40, 1.2]
• 𝜇 (𝑁 3) = 0.6;𝐸 (𝑁 3) = [0.6·800, 0.6·100, 0.6·3] = [680, 60, 1.8]

Finally, we estimate the KPIs vectors 𝐸 (𝐽𝑐
𝑘
) for each collaborative

journey 𝐽𝑐
𝑘
using Equation 10:

• 𝐸 (𝐽𝑐
1
) = [1

1
(360+1000), 1

1
(40+60), 1

1
(1+1.5)] = [1360, 100, 2.5]

• 𝐸 (𝐽𝑐
2
) = [1

1
(540+320), 1

1
(40+60), 1

1
(1.5+1.2)] = [860, 100, 2.7]

• 𝐸 (𝐽𝑐
3
) = [2

1
(680), 2

1
(60), 2

1
(1.8)] = [1360, 120, 3.6]

6 SPLITTING THE KPIS OF A JOURNEY
AMONG THE CORRESPONDING ORDERS

A well-known method used to split the cost of a collaboration

among a set 𝑛 of participants Shapley value (see, e.g., [24]). This
method is based on a cost function 𝑣 : 2𝑁 → IRwith 𝑣 (∅) = 0, which

defines the total cost of any collaboration of the set𝑁 of participants.

Our intention is to divide the costs of a journey among the orders

planned for delivery within the journey itself with the purpose

of estimating a KPIs vector for each order. Thus, we interpret the

set of orders defining a non-collaborative journey 𝐽𝑛𝑐 as the set of

participants for the computation of the Shapley value. Regarding

the cost function, we consider a function TSP(𝑡, 𝐼) which returns

the total journey distance computed solving a travelling salesman

problem with same start and end point 𝑡 (which is the location

of the truck assigned to 𝐽𝑛𝑐), and with input locations defined as

the pick up and drop locations of the orders 𝐼 ⊆ 𝐽𝑛𝑐 . With the

computation of TSP(𝑡, 𝐼), we consider precedence constraints for
the pick up and drop location of each order in 𝐼 . However, we ignore

the capacity constraint of the corresponding assigned truck.

The Shapley value of an order 𝛼 ∈ 𝐽𝑛𝑐 is then defined as:

𝜙 (𝛼) =
∑

𝐼 ⊆𝐽 𝑛𝑐\{𝛼 }

|𝐼 |!(|𝐽𝑛𝑐 | − |𝐼 | − 1)!
|𝐽𝑛𝑐 |! (TSP(𝑡, 𝐼 ∪ {𝛼}) −TSP(𝑡, 𝐼)) .

(11)

The Shapley value of an order 𝛼 ∈ 𝐽𝑛𝑐 can be interpreted as

the average increase of total distance caused by the inclusion of

𝛼 in different journeys delivering all the possible permutations of

the orders 𝐽𝑛𝑐 \ {𝛼}. A fundamental property derived from the

theory behind the Shapley value is that TSP(𝑡, 𝐽𝑛𝑐) = ∑
𝛼 ∈𝐽 𝑛𝑐 𝜙 (𝛼).

Roughly speaking, the higher the Shapley value of an order is, the

higher the extra distance that a truck has to travel to include the

delivery of the order in the journey. We adopted this method since

it seems reasonable to assign a higher fraction of KPIs to orders

with higher Shapley value. The pseudocode of our implementation

to compute 𝜙 (𝛼) for all the orders of a journey 𝐽𝑛𝑐 with starting

point 𝑡 is shown in Algorithm 1.

Once we have computed the Shapley value for every order 𝛼 of

a non-collaborative journey 𝐽𝑛𝑐 , we compute the corresponding

Shapley weight 𝜇 (𝛼) as:

𝜇 (𝛼) = 𝜙 (𝛼)∑
𝛽∈𝐽 𝑛𝑐 𝜙 (𝛽)

(12)

The Shapley weights are then used in Equation 9 to split the KPIs of

a non-collaborative journey 𝐽𝑛𝑐 among the corresponding orders.

Algorithm 1 Shapley Value

1: procedure 𝑆𝑉 (𝐽𝑛𝑐 , 𝑡)
2: 𝑛 ← |𝐽𝑛𝑐 |
3: S0 ← {∅}
4: S𝑖 ← ∅ for each 𝑖 ∈ [1, . . . 𝑛 − 1]
5: 𝐿(∅) ← 0

6: 𝜙 (𝛼) ← 0 for each 𝛼 ∈ 𝐽𝑛𝑐
7: for𝑚 ∈ [0, . . . 𝑛 − 1] do
8: 𝑐 ← 𝑚!(𝑛−𝑚−1)!

𝑛!
9: for 𝐼 ⊆ 𝐽𝑛𝑐 with |𝐼 | =𝑚 + 1 do
10: S𝑚+1 ← S𝑚+1 ∪ {𝐼 }
11: if ∃𝛼, 𝛽 ∈ 𝐼 with same pick up and drop location

then
12: 𝐿(𝐼) ← 𝐿(𝐼 \ {𝛼})
13: else
14: 𝐿(𝐼) ← (TSP(𝑡, 𝐼))
15: for 𝐼 ∈ S𝑚 do
16: for 𝛼 ∈ 𝐽𝑛𝑐 \ 𝐼 do
17: 𝜙 (𝛼) ← 𝜙 (𝛼) + 𝑐 (𝐿(𝐼 ∪ 𝛼) − 𝐿(𝐼))

return 𝜙

Example 6.1. Consider for example a non-collaborative journey

composed by three orders 𝐽𝑛𝑐 = {𝛼1, 𝛼2, 𝛼3} with corresponding

pick up and drop locations (𝑝𝑖 , 𝑑𝑖) shown in Figure 1. Suppose that

𝑡 is the start and end location of the truck assigned to 𝐽𝑛𝑐 , and

suppose that the distance between two locations of the map shown

in Figure 1 is the corresponding Manhattan distance. We then get

the following values of TSP(𝑡, 𝐼) for each subset 𝐼 of 𝐽𝑛𝑐 :

Preference Learning for Horizontal Collaboration in Transport Operations MODeM ’21, July 14-16, 2021, Online

TSP(𝑡, ∅) = 0

TSP(𝑡, {𝛼1}) = 14

TSP(𝑡, {𝛼2}) = 14

TSP(𝑡, {𝛼3}) = 14

TSP(𝑡, {𝛼1, 𝛼2}) = 14

TSP(𝑡, {𝛼2, 𝛼3}) = 20

TSP(𝑡, {𝛼1, 𝛼3}) = 20

TSP(𝑡, {𝛼1, 𝛼2, 𝛼3}) = 20

(13)

Figure 1: Delivery map of three orders 𝐽𝑛𝑐 = {𝛼1, 𝛼2, 𝛼3} with
start location t (circle) corresponding pick up (triangle) and
drop (square) location (𝑝𝑖 , 𝑑𝑖)

.

Following Equation 11 we get:

𝜙 (𝛼1) = 𝜙 (𝛼2) =
1

3

TSP(𝑡, {𝛼1})

+ 1

6

(TSP(𝑡, {𝛼1, 𝛼2}) − TSP(𝑡, {𝛼2})

+ 1

6

(TSP(𝑡, {𝛼1, 𝛼3}) − TSP(𝑡, {𝛼3})

+ 1

3

(TSP(𝑡, {𝛼1, 𝛼2, 𝛼3}) − TSP(𝑡, {𝛼2, 𝛼3})

=
14

3

+ 0

6

+ 6

6

+ 0

3

=
34

6

.

(14)

𝜙 (𝛼3) =
1

3

TSP(𝑡, {𝛼3})

+ 1

6

(TSP(𝑡, {𝛼1, 𝛼3}) − TSP(𝑡, {𝛼1})

+ 1

6

(TSP(𝑡, {𝛼2, 𝛼3}) − TSP(𝑡, {𝛼2})

+ 1

3

(TSP(𝑡, {𝛼1, 𝛼2, 𝛼3}) − TSP(𝑡, {𝛼1, 𝛼2})

=
14

3

+ 6

6

+ 6

6

+ 6

3

=
52

6

.

(15)

Thus, following Equation 12 we get:

𝜇1 = 𝜇2 =
𝜙 (𝛼1)

𝜙 (𝛼1) + 𝜙 (𝛼2) + 𝜙 (𝛼3)
= 0.283, (16)

𝜇3 =
𝜙 (𝛼3)

𝜙 (𝛼1) + 𝜙 (𝛼2) + 𝜙 (𝛼3)
= 0.433. (17)

Note that with a straightforward method to compute the weights

such as 𝜇𝑖 =
TSP(𝑡,{𝛼𝑖 })∑

𝑗∈{1,2,3} TSP(𝑡,{𝛼 𝑗 }) wewould have got the sameweight

for each order in this example.

The computational complexity of the Shapley value is exponen-

tial with respect to the number of orders composing a Journey. In

fact, following Equation 11, for each non-collaborative journey 𝐽𝑛𝑐

we should solve 2
| 𝐽 𝑛𝑐 |

TSPs, one for each subset of 𝐽𝑛𝑐 .

In our use case we may have more than ten orders delivered

with a single journey, and the computational time required for

an exact computation of the Shapley value with this amount of

orders is too slow (see Section 7). However, we have several orders

with the same pick up and drop location. We thus compute the

Shapley values considering orders with the same pick up and drop

location as if they were one single order, and equally split the

corresponding Shapley value among the orders grouped together.

The resulting weights will be different, however dividing the KPIs

between stretches of journeys and equally splitting the KPIs among

orders with the same pick up and drop location sounds a reasonable

approach which could also result in a more intuitive solution. The

pseudocode of this variation is shown in Algorithm 2.

Example 6.2. Consider again the setup of Example 6.1 shown in

Figure 1. If we group together the orders 𝛼1 and 𝛼2 and we consider

them as if they were one unique order 𝛼12, we obtain the following

Shapley values:

𝜙 (𝛼12) =
1

2

TSP(𝑡, {𝛼12})

+ 1

2

(TSP(𝑡, {𝛼12, 𝛼3}) − TSP(𝑡, {𝛼3})

=
14

2

+ 6

2

= 10

(18)

𝜙 (𝛼3) =
1

2

TSP(𝑡, {𝛼3})

+ 1

2

(TSP(𝑡, {𝛼12, 𝛼3}) − TSP(𝑡, {𝛼12})

=
14

2

+ 6

2

= 10

(19)

If we equally split the Shapley value of the orders grouped to-

gether, we get 𝜙 (𝛼1) = 𝜙 (𝛼2) = 𝜙 (𝛼12)
2

= 5 and the Shapley weights

are then:

𝜇1 = 𝜇2 =
𝜙 (𝛼1)

𝜙 (𝛼1) + 𝜙 (𝛼2) + 𝜙 (𝛼3)
= 0.25, (20)

𝜇3 =
𝜙 (𝛼3)

𝜙 (𝛼1) + 𝜙 (𝛼2) + 𝜙 (𝛼3)
= 0.5. (21)

If also Algorithm 2 was too slow for a real application, one could

consider the Monte Carlo approximation for the Shapley value

presented in [2].

7 EXPERIMENTAL RESULTS
We briefly summarise some results of our experimental testing. All

experiments were performed on a computer facilitated by a Core

i5 2.70 GHz processor and 8 GB RAM. We used the Java library

Jsprit to compute the TSP problems, and we tested our algorithms

with randomly generated instances. Table 2 and Table 3 show the

time performance of Algorithm 1 and Algorithm 2 with respect to

the number of orders and the number of pairs of pick up and drop

locations. As we can see, the execution time of Algorithm 1 grows

exponentially with respect to the number of orders, and it is not very

MODeM ’21, July 14-16, 2021, Online Federico Toffano and Nic Wilson

Algorithm 2 Simplified Shapley Value

1: procedure 𝑆𝑆𝑉 (𝐽𝑛𝑐 , 𝑡)
2: 𝜙 (𝛼) ← 0 for each 𝛼 ∈ 𝐽𝑛𝑐
3: 𝐻 (𝛼) ← ∅ for each 𝛼 ∈ 𝐽𝑛𝑐
4: 𝐽𝑛𝑐 ′ ← ∅
5: for 𝛼 ∈ 𝐽𝑛𝑐 do
6: if ∃𝛽 ∈ 𝐽𝑛𝑐 ′ with same pick up and drop location of 𝛼

then
7: 𝐻 (𝛽) ← 𝐻 (𝛽) ∪ 𝛼
8: else
9: 𝐽𝑛𝑐 ′ ← 𝐽𝑛𝑐 ′ ∪ 𝛼
10: 𝑛 ← |𝐽𝑛𝑐 ′ |
11: S0 ← {∅}
12: S𝑖 ← ∅ for each 𝑖 ∈ [1, . . . 𝑛 − 1]
13: 𝐿(∅) ← 0

14: for𝑚 ∈ [0, . . . 𝑛 − 1] do
15: 𝑐 ← 𝑚!(𝑛−𝑚−1)!

𝑛!

16: for 𝐼 ⊆ 𝐽𝑛𝑐 ′ with |𝐼 | =𝑚 + 1 do
17: S𝑚+1 ← S𝑚+1 ∪ {𝐼 }
18: 𝐿(𝐼) ← (TSP(𝑡, 𝐼))
19: for 𝐼 ∈ S𝑚 do
20: for 𝛼 ∈ 𝐽𝑛𝑐 ′ \ 𝐼 do
21: 𝜙 (𝛼) ← 𝜙 (𝛼) + 𝑐 (𝐿(𝐼 ∪ 𝛼) − 𝐿(𝐼))
22: for 𝛼 ∈ 𝐽𝑛𝑐 do
23: if 𝐻 (𝛼) ≠ ∅ then
24: for 𝛽 ∈ 𝐻 (𝛼) do
25: 𝜙 (𝛽) ← 𝜙 (𝛼)

|𝐻 (𝛼) |+1
26: 𝜙 (𝛼) ← 𝜙 (𝛼)

|𝐻 (𝛼) |+1
return 𝜙

sensitive with respect to the number of pairs of pick up and drop

locations (which cannot be greater than the number of orders since

each order is associated with only one pair of locations). On the

other hand, the execution time of Algorithm 2 grows exponentially

with respect to the number of pairs of pick up and drop locations,

and it is not very sensitive with respect to the number of orders.

This is due to the computational burden of the Shapley values,

which is strictly related to the number of orders for Algorithm 1,

and to the number of pairs of pick up and drop off locations for

Algorithm 2. In our context we should not have more than six pairs

of pick up and drop off locations for each journey, but we could

have more than ten orders. Therefore Algorithm 2 seems to be the

best choice since it would improve the time response of the system.

8 CONCLUSIONS
With this work we presented a preference learning method for

collaborative Vehicle Routing Problem developed within the Euro-

pean project LOGISTAR. In particular, we have shown how we can

learn the preferences of the decision-makers involved in collabo-

rative journeys, by observing their interactions with the system,

and translating input preference information into constraints for

an SVM algorithm estimating a preference model. The preference

model considered is the weighted sum of a set of KPIs evaluating

the collaborative journeys, and it defines the trade-offs over the

Table 2: Execution time of Algorithm 1 varying the number
of orders and the number of pick up and drop locations

N. orders N. locations pairs Time [s]

2 1 2.8

2 2 3.6

4 1 5.1

4 4 5.5

6 1 7.6

6 6 9.3

8 1 23.2

8 8 27.2

10 1 80.2

10 10 86.7

Table 3: Execution time of Algorithm 2 varying the number
of pick up and drop locations and the number of orders.

N. locations pairs N. Orders Time [s]

2 2 3.2

2 20 3.6

4 4 4.8

4 40 5.2

6 6 10.1

6 60 11.8

8 8 22.3

8 80 24.3

10 10 83.9

10 100 85.2

KPIs. With our approach we learn a preference model for every

partner involved, and also a preference model considering the pref-

erences of all the partners. We also have shown a method based on

the Shapley value to evaluate the improvement or disimprovement

on the KPIs arising from the collaboration. This method computes

an estimated non-collaborative KPIs vector which can be compared

with the KPIs vector associated with a collaborative journey with

the purpose of evaluating the collaboration.

Future work could involve alternative techniques to translate the

motivations of the decisions into preference constraints, the evalu-

ation of different preference learning approaches such as Bayesian

methods or robust ordinal regression, and methods for the estima-

tion of joint preference models with more than two partners.

ACKNOWLEDGMENTS
This material is based upon works supported by the Science Foun-

dation Ireland under Grant No. 12/RC/2289-P2 which is co-funded

under the European Regional Development Fund, by the LOGISTAR

project [14], which is funded by the European Commission under

the Horizon 2020 programme. We are grateful also to our various

partners on the LOGISTAR project.

Preference Learning for Horizontal Collaboration in Transport Operations MODeM ’21, July 14-16, 2021, Online

REFERENCES
[1] Craig Boutilier. 2002. A POMDP formulation of preference elicitation problems.

In Proceedings of AAAI/IAAI. 239–246.
[2] Javier Castro, Daniel Gómez, and Juan Tejada. 2009. Polynomial calculation of

the Shapley value based on sampling. Computers & Operations Research 36, 5

(2009), 1726–1730.

[3] Jen Jen Chung, Carrie Rebhuhn, Connor Yates, Geoffrey A Hollinger, and Kagan

Tumer. 2019. A multiagent framework for learning dynamic traffic management

strategies. Autonomous Robots 43, 6 (2019), 1375–1391.
[4] Sascha Dahl and Ulrich Derigs. 2011. Cooperative planning in express carrier

networks—An empirical study on the effectiveness of a real-timeDecision Support

System. Decision Support Systems 51, 3 (2011), 620–626.
[5] Bo Dai and Haoxun Chen. 2012. Mathematical model and solution approach for

carriers’ collaborative transportation planning in less than truckload transporta-

tion. International Journal of Advanced Operations Management 4, 1-2 (2012),

62–84.

[6] Dave de Jonge, Filippo Bistaffa, and Jordi Levy. 2021. A Heuristic Algorithm

for Multi-Agent Vehicle Routing with Automated Negotiation. In Proceedings of
the 20th International Conference on Autonomous Agents and MultiAgent Systems.
404–412.

[7] Erella Eisenstadt, Amiram Moshaiov, and Gideon Avigad. 2015. Co-evolution

of strategies for multi-objective games under postponed objective preferences.

In 2015 IEEE conference on computational intelligence and games (CIG). IEEE,
461–468.

[8] Elena Fernández, Mireia Roca-Riu, and M Grazia Speranza. 2018. The shared

customer collaboration vehicle routing problem. European journal of operational
research 265, 3 (2018), 1078–1093.

[9] Peter C Fishburn. 1970. Utility theory for decision making. Technical Report.

Research analysis corp McLean VA.

[10] Margaretha Gansterer and Richard F Hartl. 2018. Collaborative vehicle routing:

a survey. European Journal of Operational Research 268, 1 (2018), 1–12.

[11] Shengbo Guo and Scott Sanner. 2010. Real-time multiattribute bayesian prefer-

ence elicitation with pairwise comparison queries. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. JMLR Workshop

and Conference Proceedings, 289–296.

[12] Thorsten Joachims. 2002. Optimizing search engines using clickthrough data.

In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining. 133–142.

[13] S. Kaddani, D. Vanderpooten, J. M. Vanpeperstraete, and H. Aissi. 2017. Weighted

sum model with partial preference information: Application to multi-objective

optimization. European Journal of Operational Research 260, 2 (2017), 665–679.

[14] LOGISTAR. 2021. https://logistar-project.eu/.

[15] Mojtaba Montazery and NicWilson. 2016. Learning User Preferences in Matching

for Ridesharing.. In ICAART (2). 63–73.
[16] Enrique Mu and Milagros Pereyra-Rojas. 2017. Understanding the analytic

hierarchy process. In Practical decision making. Springer, 7–22.

[17] Narges Norouzi, R Tavakkoli-Moghaddam, M Ghazanfari, M Alinaghian, and A

Salamatbakhsh. 2012. A new multi-objective competitive open vehicle routing

problem solved by particle swarm optimization. Networks and Spatial Economics
12, 4 (2012), 609–633.

[18] Roxana Rădulescu, Patrick Mannion, Diederik M Roijers, and Ann Nowé. 2020.

Multi-objective multi-agent decision making: a utility-based analysis and survey.

Autonomous Agents and Multi-Agent Systems 34, 1 (2020), 1–52.
[19] H. Raiffa. 1968. Decision analysis. Addison-Wesley.

[20] Diederik M Roijers, Shimon Whiteson, Frans A Oliehoek, et al. 2014. Linear

support for multi-objective coordination graphs. In AAMAS’14: PROCEEDINGS
OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS &
MULTIAGENT SYSTEMS. 1297–1304.

[21] Thomas L Saaty. 1990. How to make a decision: the analytic hierarchy process.

European journal of operational research 48, 1 (1990), 9–26.

[22] A. Salo and R. P. Hämäläinen. 2010. Preference Programming – Multicriteria

Weighting Models under Incomplete Information. In Proceedings Handbook of
Multicriteria Analysis. Springer Berlin Heidelberg, 167–187.

[23] Christoph Schneeweiss. 2012. Distributed decision making. Springer Science &
Business Media.

[24] Lloyd S Shapley. 2016. 17. A value for n-person games. Princeton University Press.

[25] Stefano Teso, Andrea Passerini, and Paolo Viappiani. 2016. Constructive prefer-

ence elicitation by setwise max-margin learning. arXiv preprint arXiv:1604.06020
(2016).

[26] Federico Toffano, Paolo Viappiani, and Nic Wilson. 2021. Efficient Exact Compu-

tation of Setwise Minimax Regret for Interactive Preference Elicitation. In 20th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2021).

[27] Federico Toffano and Nic Wilson. 2020. Minimality and comparison of sets of

multi-attribute vectors. In Ebook Series: Frontiers in Artificial Intelligence and
Applications. IOS Publishing, 913–920.

[28] Omkarprasad S Vaidya and Sushil Kumar. 2006. Analytic hierarchy process: An

overview of applications. European Journal of operational research 169, 1 (2006),

1–29.

[29] Ivan Vendrov, Tyler Lu, Qingqing Huang, and Craig Boutilier. 2020. Gradient-

based optimization for Bayesian preference elicitation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 10292–10301.

[30] Paolo Viappiani and Craig Boutilier. 2020. On the equivalence of optimal recom-

mendation sets and myopically optimal query sets. Artificial Intelligence (2020),
103328.

[31] Ling Wang, Jian Chu, and Jun Wu. 2007. Selection of optimum maintenance

strategies based on a fuzzy analytic hierarchy process. International journal of
production economics 107, 1 (2007), 151–163.

[32] Wenyu Zhang, Zixuan Chen, Shuai Zhang, Weirui Wang, Shuiqing Yang, and

Yishuai Cai. 2020. Composite multi-objective optimization on a new collaborative

vehicle routing problem with shared carriers and depots. Journal of Cleaner
Production 274 (2020), 122593.

	Abstract
	1 Introduction
	2 Related Work
	3 Formal settings
	4 Preference learning
	5 Computation of E(Jc)
	6 Splitting the KPIs of a journey among the corresponding orders
	7 Experimental results
	8 Conclusions
	Acknowledgments
	References

